研究業績
論文
- Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S.: Non-Linear Dose-Response Relationship for Metformin in Japanese Patients With Type 2 Diabetes: Analysis of Irregular Longitudinal Data by Interpretable Machine Learning Models. Pharmacology Research & Perspectives 13(1): e70055, 2025.
- Minagawa K, Hayakawa T, Akimoto H, Nagashima T, Takahashi Y, Asai S.: Late development of OCD-like phenotypes in Dlgap1 knockout mice. Psychopharmacology: 242(1): 215-231, 2025.
- Takahashi Y, Minagawa K, Nagashima T, Hayakawa T, Akimoto H, Asai S.: Long-term benefit of SGLT2 inhibitors to prevent heart failure hospitalization in patients with diabetes, with potential time-varying benefit. Clinical and Translational Science 17(12): e70088, 2024.
- Hayakawa T, Nagashima T, Akimoto H, Minagawa K, Takahashi Y, Asai S.: Benzodiazepine-related dementia risks and protopathic biases revealed by multiple-kernel learning with electronic medical records. Digital Health 9: 20552076231178577, 2023.
- Akimoto H, Hayakawa T, Nagashima T, Minagawa K, Takahashi Y, Asai S.: Detection of potential drug-drug interactions for risk of acute kidney injury: a population-based case-control study using interpretable machine-learning models. Frontiers in Pharmacology 14: 1176096, 2023.
- Yamazaki K, Terao C, Takahashi A, Kamatani Y, Matsuda K, Asai S, Takahashi Y.: Genome-wide Association Studies Categorized by Class of Antihypertensive Drugs Reveal Complex Pathogenesis of Hypertension with Drug Resistance. Clinical Pharmacology &Therapeutics 114(2): 393-403, 2023.
- Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S.: Detection of Synergistic Interaction on an Additive Scale Between Two Drugs on Abnormal Elevation of Serum Alanine Aminotransferase Using Machine-Learning Algorithms. Frontiers in Pharmacology 13: 910205, 2022.
- Nagashima T, Hayakawa T, Akimoto H, Minagawa K, Takahashi Y, Asai S.: Identifying Antidepressants Less Likely to Cause Hyponatremia: Triangulation of Retrospective Cohort, Disproportionality, and Pharmacodynamic Studies. Clinical Pharmacology & Therapeutics 111(6): 1258-1267, 2022.
- Akimoto H, Nagashima T, Minagawa K, Hayakawa T, Takahashi Y, Asai S.: Signal Detection of Potential Hepatotoxic Drugs:Case-Control Study Using Both a Spontaneous Reporting System and Electronic Medical Records. Biological & Pharmaceutical Bulletin 44 (10) : 1514-1523, 2021.
- Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma T, Yamamoto K, Akiyama M, Ishigaki K, Suzuki A, Suzuki K, Obara W, Yamaji K, Takahashi K, Asai S, Takahashi Y, Suzuki T, Shinozaki N, Yamaguchi H, Minami S, Murayama S, Yoshimori K, Nagayama S, Obata D, Higashiyama M, Masumoto A, Koretsune Y; FinnGen, Ito K, Terao C, Yamauchi T, Komuro I, Kadowaki T, Tamiya G, Yamamoto M, Nakamura Y, Kubo M, Murakami Y, Yamamoto K, Kamatani Y, Palotie A, Rivas MA, Daly MJ, Matsuda K, Okada Y. : Across-population atlas of genetic associations for 220 human phenotypes. Nature Genetics 53 (10) : 1415-1424, 2021.
- Takahashi Y, Yamazaki K, Kamatani Y, Kubo M, Masuda K, Asai S. : A genome-wide association study identifies a novel candidate locus at the DLGAP1 gene with susceptibility to resistant hypertension in the Japanese population. Scientific Reports 11 (1) : 19497, 2021.
- Akimoto H, Takahashi Y, Asai S. : Effects of Fibrates on Risk of Development of Diabetic Retinopathy in Japanese Working Age Patients with Type 2 Diabetes and Dyslipidemia: a Retrospective Cohort Study. Yakugaku Zasshi 141 (5) : 761-769, 2021.
- Takeuchi S, Takahashi Y, Asai S. : Comparison of pleiotropic effects of statins vs fibrates on laboratory parameters in patients with dyslipidemia: A retrospective cohort study. Medicine (Baltimore) 99 (50) : e23427, 2020.
- Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, Sakaue S, Matoba N, Low SK, Okada Y, Terao C, Amariuta T, Gazal S, Kochi Y, Horikoshi M, Suzuki K, Ito K, Koyama S, Ozaki K, Niida S, Sakata Y, Sakata Y, Kohno T, Shiraishi K, Momozawa Y, Hirata M, Matsuda K, Ikeda M, Iwata N, Ikegawa S, Kou I, Tanaka T, Nakagawa H, Suzuki A, Hirota T, Tamari M, Chayama K, Miki D, Mori M, Nagayama S, Daigo Y, Miki Y, Katagiri T, Ogawa O, Obara W, Ito H, Yoshida T, Imoto I, Takahashi T, Tanikawa C, Suzuki T, Sinozaki N, Minami S, Yamaguchi H, Asai S, Takahashi Y, Yamaji K, Takahashi K, Fujioka T, Takata R, Yanai H, Masumoto A, Koretsune Y, Kutsumi H, Higashiyama M, Murayama S, Minegishi N, Suzuki K, Tanno K, Shimizu A, Yamaji T, Iwasaki M, Sawada N, Uemura H, Tanaka K, Naito M, Sasaki M, Wakai K, Tsugane S, Yamamoto M, Yamamoto K, Murakami Y, Nakamura Y, Raychaudhuri S, Inazawa J, Yamauchi T, Kadowaki T, Kubo M, Kamatani Y. : Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nature Genetics 52 (7) : 669-679, 2020.
- Ishii M, Ishii Y, Nakayama T, Takahashi Y, Asai S. : 13C-caffeine breath test identifies single nucleotide polymorphisms associated with caffeine metabolism. Drug Metabolism and Pharmacokinetics 35 (3) : 321-328, 2020.
- Nishida Y, Takahashi Y, Tezuka K, Akimoto H, Nakayama T, Asai S. : Comparative effect of dipeptidyl-peptidase 4 inhibitors on laboratory parameters in patients with diabetes mellitus. BMC Pharmacology & Toxicology 21 (1) : 28, 2020.
研究費 2013年以降の概算金額 3.4億円
AMED 合計 145,560千円
- 2020~2022年度 124,500千円
ゲノム医療実現バイオバンク利活用プログラム(ゲノム研究バイオバンク)
利活用を目的とした日本疾患バイオバンクの運営・管理 - 2022~2024年度 9,360千円
ワクチン開発のための世界トップレベル研究開発拠点の形成事業
大規模疾患コホート・アカデミア連携を基盤とするオミックス解析・サーベイランス体制の整備による新興感染症重症化リスク因子の探索 - 2019~2021年度 11,700千円
ゲノム創薬基盤推進研究事業(ゲノム情報研究の医療への実利用を促進する研究)
乳がん・大腸がん・膵がんに対する適切な薬剤投与を可能にする大規模データ基盤の構築
科研費 合計 28,080千円
- 基盤研究(A) 2020.04.01~2023.03.31 5,850千円
リアルワールドデータの解析に基づく副作用機序の解明と疾患治療標的の発見 - 学術変革領域研究(B) 2022.05.20~2025.03.31 21,710千円
発達期脳多元自発活動の数理モデルとその学習理論の構築 - 若手研究 2022.04.01~2024.03.31 520千円
機械学習アプローチによる薬物性肝障害の発症に寄与する未知の薬物間相互作用の検出
その他 合計 157,525千円
- 寄附講座 125,000千円
- 製薬企業など研究費 32,525千円


