令和6年度 医学部一般選抜(N 全学統一方式第2期二次試験)解答 数学

[1]

(1)
$$a = \sqrt{3} + \sqrt{5}$$
 より $\frac{2}{a} = \frac{2}{\sqrt{5} + \sqrt{3}} = \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} = \frac{2(\sqrt{5} - \sqrt{3})}{5 - 3} = \sqrt{5} - \sqrt{3}$ であるから $a + \frac{2}{a} = \sqrt{3} + \sqrt{5} + \sqrt{5} - \sqrt{3} = 2\sqrt{5}$ を得る. 答: $2\sqrt{5}$

(2) まず、(1)より $\sqrt{5} = \frac{a}{2} + \frac{1}{a}$ …① である. a は有理数であると仮定する. このとき, $\frac{a}{2}$ も有理数、 $\frac{1}{a}$ も有理数となるから、 $\frac{a}{2} + \frac{1}{a}$ も有理数となる。そうすると①より $\sqrt{5}$ が有理数となってしまい、これは $\sqrt{5}$ が無理数であることに矛盾する. 以上より、a は無理数でなければならない(背理法).

[2]

(1) C(2,2) とし、求める接線を y = kx とおく. 条件より 0 < k < 1 である.

$$\mathrm{CA} = 1$$
 であるから、 C と ℓ の距離の公式より $\mathrm{CA} = \frac{|2k-2|}{\sqrt{1+k^2}} = 1$ を得る. 辺々 2 乗し

て整理すると $3k^2-8k+3=0$ を得るから、これを解くと $k=\frac{4\pm\sqrt{7}}{3}$ を得る. い

ま
$$0 < k < 1$$
 であったから $k = \frac{4-\sqrt{7}}{3}$ である. 従って, $\ell : y = \frac{4-\sqrt{7}}{3}x$ を得る.

つぎに、直線 CA は ℓ に垂直であるから、その方程式は

$$y = -\frac{3}{4-\sqrt{7}}(x-2) + 2 = -\frac{4+\sqrt{7}}{3}(x-2) + 2$$
 で与えられる. これと ℓ との交点が

A であるから連立して
$$-\frac{4+\sqrt{7}}{3}(x-2)+2=\frac{4-\sqrt{7}}{3}x \leftrightarrow \frac{8}{3}x=\frac{14+2\sqrt{7}}{3} \leftrightarrow x=\frac{7+\sqrt{7}}{4}$$
 を

得る. また、
$$y = \frac{4-\sqrt{7}}{3} \times \frac{7+\sqrt{7}}{4} = \frac{21-3\sqrt{7}}{12} = \frac{7-\sqrt{7}}{4}$$
 である.

答:
$$\ell: y = \frac{4-\sqrt{7}}{3}x$$
, $A\left(\frac{7+\sqrt{7}}{4}, \frac{7-\sqrt{7}}{4}\right)$

【別解】y = kxを円 C の方程式に代入して D = 0 を利用すると $x = \frac{2(k+1)}{1+k^2}$ となるので、 D = 0 から k の値を求めて点Aの座標を求めてもよい.

(2) 円 C の図を描くと点(2, 3)を通るので、条件より、点 B(2, 3) であることがわかる.

$$\overrightarrow{OA} = \left(\frac{7+\sqrt{7}}{4}, \frac{7-\sqrt{7}}{4}\right)$$
, $\overrightarrow{OB} = (2,3)$ であるから、 $\Delta OAB = \frac{1}{2}\left|3 \times \frac{7+\sqrt{7}}{4} - 2 \times \frac{7-\sqrt{7}}{4}\right| = \frac{7+5\sqrt{7}}{8}$ を

得る. 答:
$$\frac{7+5\sqrt{7}}{8}$$

【別解】直線 ℓ とx軸の正の向きとのなす角を θ とおくとき、 $OA=\sqrt{7}$ であるから

(1)より
$$\cos\theta = \frac{\sqrt{7}+1}{4}$$
, $\sin\theta = \frac{\sqrt{7}-1}{4}$ がわかる. また $OB = \sqrt{13}$ であるから、 $\alpha = \angle AOB$ とおくと、 $\cos(\theta + \alpha) = \frac{2}{\sqrt{13}}$, $\sin(\theta + \alpha) = \frac{3}{\sqrt{13}}$ を得る. 加法定理を用いて $\sin\alpha$ につい

て解くと $\sin \alpha = \frac{\sqrt{7}+5}{4\sqrt{13}}$ が得られるので、 $\Delta OAB = \frac{1}{2} \times \sqrt{7} \times \sqrt{13} \times \frac{\sqrt{7}+5}{4\sqrt{13}} = \frac{7+5\sqrt{7}}{8}$ を得る.

[3]

(1)
$$f(x) = \frac{1}{1+x^2}$$
, $f'(x) = \frac{-2x}{(1+x^2)^2}$, $f''(x) = \frac{2(3x^2-1)}{(1+x^2)^3}$

$$g(x) = \frac{x^2}{1+x^2}$$
, $g'(x) = \frac{2x}{(1+x^2)^2}$, $g''(x) = \frac{-2(3x^2-1)}{(1+x^2)^3}$

より,

y = f(x) は x = 0 で極大値かつ最大値 1 をとり、y = 0 が漸近線である. また、y = g(x) は x = 0 で極小値かつ最小値 0 をとり、y = 1 が漸近線である.

(以上は図を描く場合に必要であるが、必須ではない. 省略可能)

 $f(x) = g(x) \Leftrightarrow x^2 = 1 \Leftrightarrow x = \pm 1$ であり、 $-1 \le x \le 1$ において $f(x) - g(x) \ge 0$ であるから、求める面積は

$$\int_{-1}^{1} \{f(x) - g(x)\} dx = \int_{-1}^{1} \frac{1 - x^{2}}{1 + x^{2}} dx = 2 \int_{0}^{1} \frac{1 - x^{2}}{1 + x^{2}} dx = 2 \int_{0}^{1} \left(-1 + \frac{2}{1 + x^{2}}\right) dx$$
$$= 2[-x]_{0}^{1} + 4 \int_{0}^{1} \frac{1}{1 + x^{2}} dx = -2 + 4 \int_{0}^{1} \frac{1}{1 + x^{2}} dx .$$

ここで,第2項の積分は $x=\tan\theta$ とおいて置換積分すれば $\int_0^1 \frac{1}{1+x^2} dx = \int_0^{\frac{\pi}{4}} d\theta = \frac{\pi}{4}$ を得るから、結局、 $\int_{-1}^1 \{f(x)-g(x)\} dx = -2+\pi=\pi-2$ を得る.

答: $\pi-2$

(2)
$$f'(\alpha) = \frac{-2\alpha}{(1+\alpha^2)^2}$$
, $g'(\alpha) = \frac{2\alpha}{(1+\alpha^2)^2}$ \sharp \flat

$$\ell_1: y = \frac{-2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{1}{1+\alpha^2} , \quad \ell_2: y = \frac{2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{\alpha^2}{1+\alpha^2} \quad \text{To 5}.$$

答:
$$\ell_1: y = \frac{-2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{1}{1+\alpha^2}$$
, $\ell_2: y = \frac{2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{\alpha^2}{1+\alpha^2}$

(3) ℓ_1 と ℓ_2 の交点のx座標を求める.

$$\frac{-2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{1}{1+\alpha^2} = \frac{2\alpha}{(1+\alpha^2)^2}(x-\alpha) + \frac{\alpha^2}{1+\alpha^2}$$

$$\Leftrightarrow \frac{4\alpha}{(1+\alpha^2)^2}(x-\alpha) = \frac{1-\alpha^2}{1+\alpha^2} \iff 4\alpha x = 1-\alpha^4 + 4\alpha^2 \iff x = \frac{1+4\alpha^2-\alpha^4}{4\alpha}$$
 を得る.

条件より $\frac{1+4\alpha^2-\alpha^4}{4\alpha}=-\frac{11}{3}$ であるから、整理すると

 $3\alpha^4 - 12\alpha^2 - 44\alpha - 3 = 0$ を得る. α^4 の係数と定数項の値より、解の候補として $\alpha = \pm 1, \pm 3$ が考えられるので代入して確かめると $\alpha = 3$ が解であることがわかる. 組立除法を用いて因数分解すると

 $(\alpha-3)(3\alpha^3+9\alpha^2+15\alpha+1)=0$ となるが、 $\alpha>1$ であったから、 $\alpha=3$ が唯一の実数解である. このとき

$$\ell_1: y = \frac{-3}{50}(x-3) + \frac{1}{10}$$
 , $\ell_2: y = \frac{3}{50}(x-3) + \frac{9}{10}$ となる. 求める面積は

$$\int_{-\frac{11}{3}}^{3} \left\{ \frac{3}{50}(x-3) + \frac{9}{10} - \left(\frac{-3}{50}(x-3) + \frac{1}{10} \right) \right\} dx = \int_{-\frac{11}{3}}^{3} \left\{ \frac{3}{25}(x-3) + \frac{4}{5} \right\} dx$$
$$= \left[\frac{3}{50}(x-3)^2 + \frac{4}{5}x \right]_{-\frac{11}{3}}^{3} = \frac{12}{5} - \frac{3}{50} \times \left(\frac{20}{3} \right)^2 + \frac{4}{5} \times \frac{11}{3} = \frac{36 - 40 + 44}{15} = \frac{40}{15} = \frac{8}{3} .$$

答: $\alpha = 3$,面積: $\frac{8}{3}$

【別解】 $\alpha=3$ と ℓ_1,ℓ_2 を求めたら、囲む図形は三角形なので、その面積を S とすると $S=\frac{1}{2}\times\left(3-\left(-\frac{11}{3}\right)\right)\times\left(\frac{9}{10}-\frac{1}{10}\right)=\frac{1}{2}\times\frac{20}{3}\times\frac{4}{5}=\frac{8}{3}$ としてもよい.