Harmonic maps from a two-torus into a complex projective space

Seiichi Udagawa

Department of Mathematics

Introduction

This paper is a exposition of recent result of Burstall's in [B] which says that any nonsuperminimal harmonic map from a two-torus into a complex projective space is covered by a *primitive* map of finite type into a certain generalized flag manifold. In [B-P], the outline of the proof of his result is appeared. First, it is observed that a primitive map ψ from a two-torus T^2 into a k-symmetric space G/K is of finite type if, for some (hence every) framing of ψ , $\alpha'_m(\partial/\partial z)$ is semisimple on a dense subset of T^2 , where α'_m is defined as follows : For some (local) lifting $F: T^2 \longrightarrow G$ of $\psi: T^2 \longrightarrow G/K$, set $\alpha = F^{-1}dF$, which is the pull-back of the Maurer-Cartan form of G. Corresponding to the reductive decomposition g = k + m, where $m = T_o(G/K)$, set $\alpha = \alpha_m + \alpha_k$, and $\alpha_m = \alpha'_m + \alpha''_m$ is a decomposition into (1,0)-form and (0,1)-form, respectively.

In this paper, we give a proof of the fact that any non-superminimal harmonic map φ from a two-torus into a complex projective space may be lifted to a primitive map with semisimple α'_m into a certain generalized flag manifold, where the twistor space is chosen according to the isotropy order of φ .

1. Generalized flag manifold associated to a non-superminimal harmonic map into a complex projective space

Let $\varphi: S \longrightarrow \mathbb{C}P^n$ be a harmonic map, where $\mathbb{C}P^n = SU(n+1)/S(U(1) \times U(n))$. Let L_0 be the pull-back of universal bundle over $\mathbb{C}P^n$ by φ . L_0 is a subbundle of the trivial bundle $V(\mathbb{C}^{n+1}) = S \times \mathbb{C}^{n+1}$. We equip $V(\mathbb{C}^{n+1})$ with the standard Hermitian connected structure with Hermitian metric \langle , \rangle given by

$$< f,g> = \sum_{i=0}^{n} f_i \overline{g_i}$$
, for $f = (f_0, f_1, \cdots, f_n)$, $g = (g_0, g_1, \cdots, g_n)$

For any subbundle F of $V(\mathbf{C}^{n+1})$, we denote by F^{\perp} the Hermitian orthogonal complement of F in $V(\mathbf{C}^{n+1})$. Then, F and F^{\perp} are both equiped with the induced Hermitian connected structures from $V(\mathbf{C}^{n+1})$. Moreover, F and F^{\perp} both have the Koszul-Malgrange holomorphic structures. Let $A_z^{F,F^{\perp}}$ be the (1,0)-part of the second fundamental form of Fin $V(\mathbf{C}^{n+1})$. By taking the image of the second fundamental form, we may define the new subbundle of $V(\mathbf{C}^{n+1})$, which is extended to smooth subbundle over S (see [B-P-W]). Now, starting from L_0 , we may have the harmonic sequence $L_0 \to L_1 \to \cdots L_{r-1} \to R$, where $L_i = \operatorname{Im} A_z^{L_{i-1}, L_{i-1}^{\perp}}$ for $i = 1, \cdots, r-1$ and $R = V(\mathbb{C}^{n+1}) \ominus (\bigoplus_{i=0}^{r-1} L_i)$. This situation means that each of $L_0, L_1, \cdots, L_{r-1}$ and R are orthogonal to each other with respect to the Hermitian metric on $V(\mathbb{C}^{n+1})$. In this case, we say that φ has ∂' -isotropy order r. From the definition of harmonic sequence, it is always true that $r \geq 1$. For notational simplicity, set $L_r = R$. Set G = SU(n+1). Fix any point $p \in S$ and define $Q \in G$ by

$$Q = \zeta^i$$
 on $(L_i)_p$ for $i = 0, \cdots, r$

where $\zeta = \exp(2\pi i/r + 1)$. Then, $\tau = AdQ$ is an order (r+1)-automorphism of G and the identity component of its fixed set is $S(U(1) \times \cdots \times U(1) \times U(n+1-r))$, which we denote by K. Hence, we define a map $\psi : S \longrightarrow N = G/K$ by

$$\psi(q) = ((L_0)_q, (L_1)_q, \cdots, (L_r)_q), \text{ for } q \in S$$

Choose the base point $o = \psi(p)$. The complexification $g^{\mathbf{C}}$ of Lie algebra g of G is decomposed into the eigenspaces of τ :

$$g^{\mathbf{C}} = \sum_{j \in \mathbf{Z}_{r+1}} g_j$$

where

$$m^{\mathbf{C}} = \sum_{j=1}^{r} g_j, \ k^{\mathbf{C}} = g_0$$

For $x = g \cdot o \in N$, define $\hat{\tau} : N \longrightarrow N$ by $\hat{\tau}(g \cdot o) = \tau(g) \cdot o$. Define $\hat{\tau}_x : N \longrightarrow N$ by $\hat{\tau}_x = g \circ \hat{\tau} \circ g^{-1}$. We may use the Killing form of g to equip N with a metric for which each of the $\hat{\tau}_x$ is an isometry so that N has the structure of an (r+1)-symmetric space([K]). Let $[g_i]$ be a subbundle of $N \times g$ of which the fibre at $x \in N$ is given by $[g_i]_x = Adgg_i$. Then, $[g_i]_x$ is ζ^i -eigenspace of $d\hat{\tau}_x$. For $x = g \cdot o \in N$, the map $g \longrightarrow T_x N$ given by

$$\xi \longrightarrow \frac{d}{dt} \mid_{t=0} expt\xi \cdot x$$

restricts to an isomorphism $Adgm \cong T_x N$. The inverse map $\beta_x : T_x N \longrightarrow Adgm \subset g$ may be viewed as a g-valued 1-form β on N, which is called Maurer-Cartan form for N (see [B-R]).

Definition. A map $\psi : S \longrightarrow G/K$ of a Riemann surface is called *primitive* if $\psi^*\beta(\partial/\partial z)$ takes values in $[g_1]$, or equivalently $\alpha'_m(\partial/\partial z)$ takes values in g_1 for any framing $F: S \longrightarrow G$.

Lemma 1.1. $A_z^{(L_i)_p,(L_{i+1})_p}$ is g_1 -valued for $i = 0, \dots, r$, where $L_{r+1} = L_0$. Moreover, ψ is a primitive map.

Proof. Let f_i be a local section of L_i for $i = 0, \dots, r$. If we set $A_z^{L_i, L_{i+1}}(f_i) = a_{i,i+1}f_{i+1}$, then we have, at p

$$(AdQ(A_z^{L_i,L_{i+1}}))Qf_i = Q(a_{i,i+1}f_{i+1})$$

= $\zeta^{i+1}A_z^{L_i,L_{i+1}}$

Therefore, we see that $AdQ(A_z^{L_i,L_{i+1}}) = \zeta A_z^{L_i,L_{i+1}}$. Next, we show the second assertion. From [B-R], we see that $\psi^*\beta(\partial/\partial z)$ is the sum of the second fundamental forms of L_i 's $(i = 0, \dots, r)$. Then, from the construction of harmonic sequence, it follows that

(1.1)
$$\psi^*\beta(\partial/\partial z) = \sum_{i=0}^r A_z^{L_i,L_{i+1}}$$

where $L_{r+1} = L_0$ for convention. Since $\psi^* \beta_p = \alpha_m$, it follows from (1.1) that ψ is a primitive map. q.e.d.

It remains to show that α'_m is a semisimple element on a dense subset of S.

2. Non-conformal harmonic maps into $\mathbb{C}P^n$.

Let \hat{f}_0 be a local non-zero holomorphic section of L_0 and $(\hat{f}_1, \dots, \hat{f}_n)$ a local field of unitary frames of $L_1 = L_0^{\perp}$. If we set $f_i = det(\hat{f}_0, \dots, \hat{f}_n)^{-\frac{1}{n+1}}\hat{f}_i$ for $i = 0, \dots, n$, then $det(f_0, \dots, f_n) = 1$. Moreover, we see that $|f_0| \dots |f_n| = 1$. Now, define F_i by $F_i = \exp(-w_i)f_i$ for $i = 0, \dots, n$, where $w_i = \log |f_i|$. Then, $F = (F_0, F_1, \dots, F_n)$ is SU(n+1)-valued locally defined function on S. Let g = su(n+1) be a Lie algebra of SU(n+1). Then, $g^{\mathbf{C}} = sl(n+1, \mathbf{C})$ is decomposed as

$$(2.1) g^{\mathbf{C}} = g_0 \oplus g_1$$

where g_i is the ζ^i -eigenspace of τ for i = 0, 1. We see that g_1 is isomorphic to the complexification of the tangent space at the base point and that $A_z^{L_0, L_0^{\perp}}$ and $A_z^{L_0^{\perp}, L_0}$ are g_1 -valued (c.f. Lemma 1.1). Write

(2.2)
$$A_z^{L_0,L_0^{\perp}}(f_0) = \sum_{i=1}^n a_i f_i, \quad A_{\overline{z}}^{L_0,L_0^{\perp}}(f_0) = \sum_{i=1}^n b_i f_i$$

Let g = m + k be a Cartan decomposition. Then, $m^{\mathbf{C}} = g_1$. Let $\alpha'_m(\partial/\partial z)$ be a *m*-part of $F^{-1}(\partial F/\partial z)$. Then, for $j = 1, \dots, n$

$$(F^{-1}(\partial F/\partial z))_{j,0} = \langle A_z^{L_0,L_0^{\perp}}(F_0),\overline{F_j} \rangle = a_j w_{j,0} ,$$

$$(F^{-1}(\partial F/\partial z))_{0,j} = -\overline{(F^{-1}(\partial F/\partial \overline{z}))}_{j,0} = -\overline{\langle A_{\overline{z}}^{L_0,L_0^{\perp}}(F_0),\overline{F_j} \rangle} = -\overline{b_j} w_{j,0} ,$$

where $w_{j,0} = \exp(w_j - w_0)$. Thus, we obtain

$$lpha_m'(\partial/\partial z) = \begin{pmatrix} 0 & -\mathbf{b} \\ {}^t\mathbf{a} & \mathbf{0}_n \end{pmatrix}$$

where $\mathbf{a} = (a_1 w_{1,0}, a_2 w_{2,0}, \cdots, a_n w_{n,0}), \mathbf{b} = (b_1 w_{1,0}, b_2 w_{2,0}, \cdots, b_n w_{n,0})$ and $\mathbf{0}_n$ is an $n \times n$ -zero matrix. If we write $\langle \mathbf{a}, \mathbf{b} \rangle = r \cdot \exp(i\theta)$ for non-zero real numbers r, θ , then the eigenvalues of $\alpha'_m(\partial/\partial z)$ are 0 (with multiplicity n-1) and $\pm \sqrt{ri} \exp(i\theta/2)$. If we set $A = A_z^{L_0^{\perp}, L_0} \circ A_z^{L_0, L_0^{\perp}}$, then we see that $trace A = \langle \mathbf{a}, \mathbf{b} \rangle$. Therefore, $\varphi : S \longrightarrow \mathbf{C}P^n$ is non-conformal at $x \in S$ if and only if $\alpha'_m(\partial/\partial z)$ is semisimple at $x \in S$. If S is a two-torus, trace A is a constant, hence we have proved

Proposition 2.1. For any non-conformal harmonic map $T^2 \longrightarrow \mathbb{C}P^n$, $\alpha'_m(\partial/\partial z)$ is a semisimple element.

Thus, we have

Theorem 2.2 [B-F-P-P]. Any non-conformal harmonic map from T^2 into $\mathbb{C}P^n$ is of finite type.

3. Weakly conformal harmonic map $S \longrightarrow \mathbb{C}P^n$.

Let $\varphi: S \longrightarrow \mathbb{C}P^n$ be a weakly conformal harmonic map with isotropy order $r(\geq 1)$. Let \hat{f}_i be a local non-zero holomorphic section of L_i for $i = 0, \dots, r-1$ and $(\hat{f}_r, \dots, \hat{f}_n)$ be a local field of unitary frame for L_r . We may suppose, without loss of generality, that

$$A_z^{L_i,L_{i+1}}(f_i) = f_{i+1}$$
 for $i = 0, \dots, r-2$.

Set $\hat{f} = (\hat{f}_0, \hat{f}_1, \dots, \hat{f}_n)$. We reset $f_i = (det\hat{f})^{-\frac{1}{n+1}}\hat{f}_i$ for $i = 0, \dots, n$. For $i = 0, \dots, n$, define F_i by $F_i = \exp(-w_i)f_i$, where $w_i = \log |f_i|$. Then, $F = (F_0, F_1, \dots, F_n)$ is SU(n+1)-valued. Set

(3.1)
$$A_z^{L_{r-1},L_r}(f_{r-1}) = \sum_{j=r}^n a_j f_j , \quad A_{\overline{z}}^{L_0,L_r}(f_0) = \sum_{j=r}^n b_j f_j .$$

Then, we have

$$(F^{-1}\partial F/\partial z))_{j,0} = \langle \partial F_0/\partial z, \overline{F_j} \rangle = \exp(w_1 - w_0)\delta_{1j}, \quad (j \ge 1),$$

$$(F^{-1}\partial F/\partial z))_{i,j} = \langle \partial F_j/\partial z, \overline{F_i} \rangle = \\ = \langle A_z^{L_j, L_{j+1}}(F_j), \overline{F_i} \rangle = \exp(w_{j+1} - w_j)\delta_{i,j+1}, \quad (0 \quad i \neq j \quad r-1),$$

$$(F^{-1}\partial F/\partial z))_{i,j} = \langle A_z^{L_r,L_r^{\perp}}(F_j), \overline{F_i} \rangle = -\overline{\langle \overline{F_j}, A_{\overline{z}}^{L_0,L_r}(F_i) \rangle} \\ = -\overline{b_j} \exp(w_j - w_0)\delta_{i,0} \pmod{k^{\mathbf{C}}}, \quad (0 \quad i \quad r-1,r \quad j \quad n),$$

$$\begin{split} (F^{-1}\partial F/\partial z))_{i,j} = &< A_z^{L_j, L_{j+1}}(F_j), \overline{F_i} > \\ &= a_i \exp(w_i - w_j) \delta_{j,r-1} \pmod{k^{\mathbf{C}}}, \ (r \quad i \quad n, 0 \quad j \quad r-1), \end{split}$$

$$(F^{-1}\partial F/\partial z))_{i,j} = 0 \pmod{k^{\mathbf{C}}}$$
 for $r \quad i \neq j \quad n$

Therefore, we have

References

- [B-P-W] J. Bolton, F. Pedit and L. Woodward, Minimal surfaces and the affine Toda field model, preprint.
- [B-F-P-P] F. E. Burstall, D. Ferus. F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, to appear in Ann. of Math.
 - [B-P] F. E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory, preprint.
 - [B-R] F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lect. Notes in Math. 1424, Springer-Verlag, 1990, Berlin-Heidelberg-NewYork-Tokyo.
 - [B] F. E. Burstall, Harmonic tori in spheres and complex projective spaces, in preparation.
 - [B-W] F. E. Burstall and J. C. Wood,
 - [K] O. Kowalski, Generalized symmetric spaces, Lect. Notes in Math. 805, Springer-Verlag 1980, Berlin-Heidelberg-NewYork.
 - [U] S. Udagawa, Non-superminimal harmonic tori in complex Grassmann manifolds of rank 2, in preparation.

Present adress : Department of Mathematics School of Medicine Nihon University Itabashi, Tokyo 173 Japan *e-mail adress* : h01217@sinet.ad.jp