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Introduction

This paper is a exposition of recent result of Burstall’s in [B] which says that any non-
superminimal harmonic map from a two-torus into a complex projective space is covered
by a primitive map of finite type into a certain generalized flag manifold. In [B-P], the
outline of the proof of his result is appeared. First, it is observed that a primitive map
¥ from a two-torus T2 into a k-symmetric space G/K is of finite type if, for some (hence
every) framing of v, o/, (9/0z) is semisimple on a dense subset of T2, where o/, is defined
as follows : For some (local) lifting F' : T? — G of ¢ : T? — G/K, set a = F~1dF,
which is the pull-back of the Maurer-Cartan form of G. Corresponding to the reductive
decomposition g = k + m, where m = T,(G/K), set a = a,, + oy, and ., = ), + i is
a decomposition into (1,0)-form and (0,1)-form, respectively.

In this paper, we give a proof of the fact that any non-superminimal harmonic map
¢ from a two-torus into a complex projective space may be lifted to a primitive map with
semisimple o/ into a certain generalized flag manifold, where the twistor space is chosen
according to the isotropy order of ¢.

1. Generalized flag manifold associated to a non-superminimal harmonic
map into a complex projective space

Let ¢ : S — CP™ be a harmonic map, where CP™ = SU(n + 1)/S(U(1) x U(n)).
Let Ly be the pull-back of universal bundle over CP™ by ¢. Lg is a subbundle of the trivial
bundle V(C"*1) = § x C"™1. We equip V(C"*!) with the standard Hermitian connected
structure with Hermitian metric <, > given by

< f7g> :Zsza for f: (anfla"'af’n)a g = (.907915"'7.971)
=0

For any subbundle F of V(C"*!), we denote by F'* the Hermitian orthogonal complement
of F in V(C"*1). Then, F and F! are both equiped with the induced Hermitian con-
nected structures from V(C"*!). Moreover, F and F* both have the Koszul-Malgrange
holomorphicstructures. Let ALF ~ be the (1,0)-part of the second fundamental form of F'

in V(C™*1). By taking the image of the second fundamental form, we may define the new
subbundle of V(C"*1), which is extended to smooth subbundle over S (see [B-P-W]).
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Now, starting from Lg, we may have the harmonic sequence Ly — Ly — --- L,_1 — R,

where L; = ImAfi*l’Liil fori=1,---,r—land R = V(C"“)@(EB;& L;). This situation
means that each of Ly, Ly, -+, L,._1 and R are orthogonal to each other with respect to
the Hermitian metric on V(C"*1). In this case, we say that ¢ has &’-isotropy order 7.
From the definition of harmonic sequence, it is always true that » > 1. For notational
simplicity, set L, = R. Set G = SU(n + 1). Fix any point p € S and define Q € G by

Q=¢" on (L), fori=0,---,r

where ¢ = exp(27i/r +1). Then, 7 = AdQ is an order (r + 1)-automorphism of G and the
identity component of its fixed set is S(U(1) x --- x U(1) x U(n+1—r)), which we denote
by K. Hence, we define a map ¢ : S — N = G/K by

P(q) = ((Lo)q7 (Ll)qv T (LT)q)a forge S

Choose the base point 0 = 1(p). The complexification g€ of Lie algebra g of G is decom-
posed into the eigenspaces of 7:
9= >, 9

JE€EZr41

where ,
mC = Zgja kc = 9o
j=1

Forx = g-0 € N, define 7 : N — N by 7(g-0) = 7(g) - 0. Define 7, : N — N by
7, = go7og~t. We may use the Killing form of g to equip N with a metric for which each
of the 7, is an isometry so that N has the structure of an (r + 1)-symmetric space([K]).
Let [g;] be a subbundle of N x g of which the fibre at © € N is given by [g;]. = Adgg;.
Then, [g;]. is (*-eigenspace of d7,. For z = g-0 € N, the map g — T, N given by

d
§— 7 lt=0 expt - x

restricts to an isomorphism Adgm = T, N. The inverse map 3, : T, N — Adgm C g may
be viewed as a g-valued 1-form (8 on N, which is called Maurer-Cartan form for N (see
[B-R]).

Definition. A map ¢ : S — G/K of a Riemann surface is called primitive if
Y*B(0/0z) takes values in [g1], or equivalently o/ (9/0z) takes values in g; for any framing
F:.:5—G.

Lemma 1.1. A,(zLi)p’(L”l)p is gi1-valued for i = 0,---,r, where L,,1 = Lg. Moreover, 1)
is a primitive map.

Proof. Let f; be a local section of L; for i = 0,---,r. If we set Af“Li“(fi) =
@i i+1fi+1, then we have, at p

(AdQ(AL "+ )Qf; = Q(aiit1fit1)

— C’L—i—l ALi7Li+1
z
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Therefore, we see that AdQ(A; AL LZ“) = (AT Next, we show the second assertion.
From [B-R], we see that ¢* 6(8/ 0z) is the sum of the second fundamental forms of L; s
(¢=20,---,r). Then, from the construction of harmonic sequence, it follows that

(1.1) V*B(8)8z) = ZAL“LM
where L,y; = Lo for convention. Since ¢*(3, = a,, it follows from (1.1) that ¢ is a

primitive map. q.e.d.

It remains to show that o/, is a semisimple element on a dense subset of S.

2. Non-conformal harmonic maps into CP".

Let fo be a local non-zero holomorphic section of Ly and ( fl, S fn) a local field
of unitary frames of Ly = Lg. If we set f; = det(fo,---,fn)*#lfi for i = 0,---,n,
then det(fo, -, fn) = 1. Moreover, we see that | fo | --- | fn |= 1. Now, define F; by

F; = exp(—w;)f; for i = 0,---,n, where w; = log | f; |. Then, F = (Fy, Fy,---,F,) is
SU(n + 1)-valued locally defined function on S. Let g = su(n + 1) be a Lie algebra of
SU(n +1). Then, g€ = sl(n + 1, C) is decomposed as

(2.1) 9° =9 ®n
where g; is the (‘-eigenspace of 7 for i = 0,1. We see that g; is isomorphic to the

€
complexification of the tangent space at the base point and that ALO’ ° and Afo Lo are

gi1-valued (c.f. Lemma 1.1). Write

(2.2) At Zazfz, Lols (1) =3 bifi
=1

Let g = m + k be a Cartan decomposition. Then, m€ = g;. Let o/, (0/9z) be a m-part of
~1(9F/dz). Then, for j =1,---,n

(F_l(aF/aZ))j,o =< ALO’Lé_ (Fo),F >=ajjwjo ,

(F7Y0F/82))o,; = —(F1(0F]07)), = —< AL (R Ty > = —bwg

where w;,o = exp(w; — wp). Thus, we obtain
0 -b
1 (0/0z) =
009 = (1 o)

where a = (aleO,agwg,o,---,anwﬂo), b = (biwi,0,b2way, -, byw,o) and 0, is an
n X n-zero matrix. If we write < a,b >= r - exp(if) for non-zero real numbers r, 6, then
the eigenvalues of o/ (8/ 0z) are 0 (with multiplicity n — 1) and ++/riexp(i6/2). If we set

€
A= Afo Lo, ALO’ , then we see that traceA =< a,b >. Therefore, ¢ : S — CP"™ is
non-conformal at z € S if and only if o, (0/0z) is semisimple at z € S. If S is a two- torus,
traceA is a constant, hence we have proved
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Proposition 2.1. For any non-conformal harmonic map T? — CP", o!,(8/9z2) is a
semisimple element.

Thus, we have

Theorem 2.2 [B-F-P-P]. Any non-conformal harmonic map from T? into CP™ is of
finite type.

3. Weakly conformal harmonic map S — CP".
Let ¢ : S — CP™ be a weakly conformal harmonic map with isotropy order (> 1).

Let fz be a local non-zero holomorphic section of L; for i = 0,---,r—1 and ( f,,, e fn)
be a local field of unitary frame for L,.. We may suppose, without loss of generality, that

ALvFi(fy) = fipn for i=0,--,r =2,

Set f = (fo,fl,-~~,fn). We reset f; = (detf)_n;ﬂfi fori =0,---,n. Fori=20,---,n,
define F; by F; = exp(—w;)fi, where w; = log | f; |. Then, F = (Fy, Fy,---,Fy,) is
SU(n + 1)-valued. Set

(3.1) ALr=vle(f0) =) Caify . AL (fo) = ) bify -
j=r j=r
Then, we have

(F‘WF/@Z))N =< 8F0/8Z,FJ >= exp(wl — wo)élj, (] > 1),

(F‘lf)F/az))m =< 8Fj/0Z,E >
=< AL P (Fy) Fy >= exp(wjpr — w)di i1, (0067507 —1),

(F10F/0z2));; =< ALY (), Fy >= —< I, AL T () >
= —b; exp(wj — wg)dio (mod k), (001illr—1,r015 n),

(FT10F/0z))i; =< Aybis (Fy), Fy >
= a; exp(w; —w;)8j,—1 (mod k), (r i 0 n,0050r—1),

(F7'9F/92));; =0 (mod k) forr (1i#j I n.
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Therefore, we have

(3.2)

[B-P-W]

0 o ... 0 0 -b
w10 O ... 0 0 01,n—r—|—1
0  woy e 0 0 01 ri1
a;n(a/az) I
0 O Wy —1,r—2 0 01,n—7"—|—1
OnfrJrl,rfl ta OnfrJrl,nfrJrl
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