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The problem of constructing harmonic maps of two-spheres into spheres, complex

Grassmann manifolds and quaternionic projective spaces is already solved and well under-

stood(see [Ba-W], [B-W], [Ca1], [Ca2],[Wo], [W]). The next problem is to construct and

understand the harmonic maps of two-tori in spheres, complex Grassmann manifolds and

quaternionic projective spaces.

In contrast with the case of harmonic two-spheres, there is a class of non-conformal

harmonic maps for two-tori. For non-conformal harmonic two-tori in compact symmetric

space of rank one, a beautiful theory is established by [B-F-P-P], which says that they are

obtained by integrating certain commuting Hamiltonian flows. They called the map of this

kind a map of finite type. However, the geometrically interesting class of harmonic maps

is that of conformal ones. The (weakly) conformal harmonic maps are divided into two

subclasses, the class of superminimal ones and the class of non-superminimal ones. The

former class is well understood (see [Ca1], [Ca2], [Ch], [E-W], [Ba-W]); its members are

projections of horizontal holomorphic curves in certain generalized flag manifolds, which

are twistor spaces of the underlying symmetric space. The latter class was recently treated

by Hitchin[H] in case of S3 as target and by Ferus-Pedit-Pinkall-Sterling [F-P-P-S] in case

of S4 as target.

Recently, Burstall[B] proved that any non-superminimal harmonic tori in a sphere or

a complex projective space is covered by a primitive harmonic map of finite type into a

certain generalized flag manifold (see [B-P-W] for superconformal harmonic two-tori in a
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complex projective space, which is a special case of Burstall’ theorem stated above).

In this paper, we treat and show some results on harmonic two-tori in complex Grass-

mann manifolds and quaternionic projective spaces.

1. Preliminaries and the fundamental facts

Let Cn be an n-dimensional complex number space with the standard Hermitian

inner product < , > defined by < v,w >=
Pn

i=1 viwi, where v = (v1, v2, · · · , vn), w =

(w1, w2, · · · , wn). Let Gk(Cn) be the Grassmann manifold of all complex k-dimensional
subspaces of Cn with its standard Kähker structure. Let ϕ :M −→ Gk(C

n) be a smooth

map of a Riemann surface. Let V (ϕ) be the pull-back of universal bundle over Gk(C
n) by

ϕ. Then, V (ϕ) is a subbundle of the trivial bundle V (Cn) = M ×Cn. We equip V (Cn)
with the standard Hermitian connected structure compatible with the Hermitian fiber

metric < , >. For any subbundle F of V (Cn), we denote by F⊥ the Hermitian orthogonal

complement of F in V (Cn) with respect to < , >. Then, F anf F⊥ are both equipped with

the Hermitian connected structures induced from that of V (Cn). Moreover, F and F⊥ both

have the Koszul- Malgrange holomorphic structures. Let A
F,F⊥
0 be the (1, 0)-part of the

second fundamental form of F in V (Cn). By taking the image of the second fundamental

form, we may define the new subbundle F1 of V (C
n), which is defined on M except the

singularity subset S. If A
F,F⊥
0 is a holomorphic section, S is a discrete set. In this case, the

line bundle [S] defined by the divisor S enables us to extend F1 smoothly over M , which

is also a holomorphic subbundle of F⊥ and denoted by F1 again. Set V0 = V (ϕ). It is

known that A
V0,V

⊥
00 is a Hom(V0, V

⊥
0 )-valued holomorphic differential if and only if ϕ is a

harmonic map. It is also known that V1 defines a harmonic map ϕ1 :M −→ Gk1(C
n) with

k1 � k, where V1 is isomorphic to the pull-back of the universal bundle over Gk1(Cn) by ϕ1.
Now, starting from V0, we may define the harmonic sequence V0 → V1 → · · ·Vr−1 → R,

where Vi = ImA
Vi−1,V ⊥i−1
0 for i = 1, · · · , r − 1 and R = V (Cn)ª (Lr−1

i=0 Vi). This situation

assumes that each of V0, V1, · · · , Vr−1 and R are orthogonal to each other with respect to
the Hermitian metric on V (Cn). In this case, we say that ϕ has strong isotropy order

≥ r. From the definition of harmonic sequence, it is always true that r ≥ 1. In the case
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where we use (0, 1)-part of the second fundamental form, we denote the corresponding

harmonic sequence by V0 ← V−1 ← · · · ← V−r+1 ← R0, where V−i = ImA
V−i+1,V ⊥−i+1
00 for

i = 1, · · · , r−1 and R0 = V (Cn)ª (Lr−1
i=0 V−i). It is known that Vi and Vj is orthogonal to

each other for 0 <| i− j |� r and that each Vi defines a harmonic map of M into Gs(C
n),

where s = rankVi.

Now, we give the definition of isotropy order of ϕ : We denote by ∇ the pull-back

connection on the pull-back bundle ϕ−1TGk(Cn), which is extended by complex linearity

to ϕ−1(TGk(Cn))C. According as the type decomposition of the complexified cotangent

bundle of M , we set ∇ = ∇0 +∇00.
Definition(cf. [E-W], [Er-W]). (1) ϕ is said to have isotropy order r if r is the largest

integer such that the following equation holds :

< ∇0αϕ,∇00βϕ > ≡ 0 for 2 � α+ β � r ,(1.1)

where ∇0ϕ = ∂ϕ, ∇00ϕ = ∂ϕ, ∇0αϕ = ∇0(∇0α−1ϕ) and ∇00βϕ = ∇00(∇00β−1ϕ). In the case
of r =∞, ϕ is said to be isotropic.
(2) ϕ is said to have strong isotropy order r if V0 ⊥ Vi for i = 1, · · · r and Vr+1 is not
perpendicular to V0 with respect to < , >. In the case of r = ∞, ϕ is said to be strongly
isotropic or superminimal.

If ϕ has strong isotropy order r, then we define the first return map AFR0 of ϕ by

AFR0 = A
Vr,V0
0 ◦AVr−1,Vr0 ◦ · · · ◦AV0,V10 ,

where A
Vr,V0
0 is the composition of the (1, 0)-part of the second fundamental form A

Vr,V
⊥
r0

and the holomorphic orthogonal projection V ⊥r → V0. Therefore, A
FR
0 is a holomorphic

differential with values in End(V0).

Example. If M = S2, i.e. a Riemann sphere, then AFR0 is nilpotent. In particular,

when the target manifold is a complex projective space CPn−1 (the case of k = 1), any

harmonic map S2 −→ CPn−1 is superminimal. For k ≥ 2, the procedure called the

forward replacement or backward replacement is useful for classifying harmonic maps of S2

into Gk(C
n) (see [B-W], [Wo], [W]). On the other hand, certainly there are some examples

where AFR0 is not nilpotent. For example, consider a Clifford torus which is total really
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and minimally immersed in CP 2. Then, its harmonic sequence is periodic with strong

isotropy order two.

2. Primitive harmonic maps of finite type

Let G be a compact semisimple Lie group. Let N = G/K be a reductive homogeneous

space. We have the reductive decomposition of Lie algebra G of G as follows :

G = K +M , [K,M] ⊂M

where K is the Lie algebra of K and M is identified with the tangent space of N at the

base point. Suppose that there is an (inner) automorphism τ : G −→ G of order k with
fixed set K. Set ζ = exp(2π√−1/k). Then, the complexification GC of G is decomposed
as

GC =
X
i∈Zk

Gi(2.1)

where Gi is the ζi-eigenspace of τ . Moreover, we have

MC =

k−1X
i=1

Gi , KC = G0 .(2.2)

Gi = G−i , [Gi,Gj ] ⊂ Gi+j .

Let o ∈ N be the base point. Suppose that τ exponentiates to give an order k automor-

phism of G, which is also denoted by τ . Define τ̂ : N −→ N by τ̂(g · o) = τ(g) · o for
g ∈ G. For x = g · o, define τ̂x : N −→ N by τ̂x = g ◦ τ̂ ◦ g−1. Then, each τ̂x is a

diffeomorphism of order k of N with isolated fixed point x and we may use the Killing

form of G to equip N with a biinvariant metric for which each τ̂x is an isometry. There-

fore, N is a k-symmetric space in the sense of Kowalski[K]. The map G −→ TxN given by

ξ 7−→ d
dt
|t=0 exp tξ ·x restricts to an isomorphism AdgM −→ TxN . We denote the inverse

map by βx : TxN −→ AdgM ⊂ G and we may regard β as a G-valued 1-form on N , which

is called Maurer-Cartan form of N in [B-R]. We define the bundle [Gi] by [Gi]x = AdgGi.
Then, [Gi] is a subbundle of the trivial bundle N ×G. Note that [Gi]x is a ζi-eigenspace of
dτ̂x at x.
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Let ψ :M −→ N be a smooth map.

Definition([B]). ψ is said to be a primitive map if ψ∗β(∂/∂z) is [G1]-valued.

In case of k = 2, N is a symmetric space and MC = G1, hence any ψ is a primitive
map. In case of k = 3, sinceMC = G1 + G1, we may give N an almost complex structure

by declaring that T 1,0N ∼= [G1], hence a primitive map is just an (almost) holomorphic
map.

Let F :M −→ G be a (local) lift of ψ :M −→ N with projection given by F 7−→ F ·o.
Such F always exists locally and is called a framing of ψ. When G is a matrix group, set

α = F−1dF . Corresponding to the reductive decomposition G = K+M, set α = αM+αK,

and αM = α0M+α
00
M is a decomposition into (1,0)-form and (0,1)-form, respectively. Then,

we have

ψ∗β0 = AdFα0M(2.3)

Using the Maurer-Cartan equation for α, we see that a primitive map is a harmonic map

if k > 2, because G1 ∩ G−1 = {0} holds when k > 2, which is an essential part of this

observation (see [B-P]).

We fix an Iwasawa decomposition of KC :

KC = K ⊕ B ,

where B is a solvable subalgebra of KC. Such a decomposition exists since K is compact

so that KC is reductive.
Set

∧GCτ = {ξ : S1 −→ GC | ξ(ζλ) = τξ(λ) for λ ∈ S1}

which is an infinite dimensional Lie algebra. We equip it with the Sobolev Hr-topology

for some r > 1/2. Let ∧Gτ be the real form

∧Gτ = {ξ ∈ ∧GCτ | ξ : S1 −→ G}

and define a complementary subalgebra by

∧+GCτ = {ξ ∈ ∧GCτ | ξ extends holomorphically to ξ : D −→ GC and ξ(0) ∈ B} ,
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where D is a unit disc. Any element ξ ∈ ∧Gτ has a Fourier expansion ξ =
P

ξnλ
n. Define

a finite dimensional subspace ∧d as follows :

∧d = {ξ ∈ ∧Gτ | ξn = 0 for all | n |> d} .

Let d ≡ 1 mod k. Then, ξd ∈ G1 and ξd−1 ∈ KC. Let T be the given maximal torus in K
and N the nilpotent subalgebra given by the positive root spaces and set H = T C. Then,
we have

KC = N ⊕H⊕N , B = (√−1T )⊕N .

Any element η ∈ KC may be written as η = ηN + ηH + ηN . Define a map r : KC −→ KC

by

r(η) = ηN +
1

2
ηH

(see Section 2.4 in [B-P]). Now, take a ξ0 ∈ ∧d and solve the differential equation
∂ξ

∂z
= [ξ,λξd + r(ξd−1)] ; ξ(0) = ξ0 .(2.4)

Then, there is a primitive harmonic map ψ : R2 −→ N with framing F : R2 −→ G

satisfying F−1∂F/∂z = ξd + r(ξd−1). Alternatively, define a : R2 −→ ∧Gτ , b : R2 −→
∧+GCτ by

exp(zλd−1ξ0) = a(z)b(z) .

Then, ψ = π ◦ (a |λ=1) is a primitive harmonic map, where π : G → N is the coset

projection.

Definition. A primitive harmonic map ψ obtained by solving the equation (2.4) is said

to be of finite type.

In this case, it is observed that ξd = α0M(∂/∂z) takes values in a single AdK
C-orbit

in G1. For a primitive harmonic map ψ of two-torus, this condition is almost sufficient to
prove that ψ is of finite type. In fact, one needs an additional condition that the orbit is

semisimple. The last condition may be replaced by more useful condition, that is

Theorem 2.1 ([B-F-P-P], [B-P], [B]). Let ψ : T 2 −→ N be a primitive harmonic map

of a two-torus into a k-symmetric space (k ≥ 2). Suppose that ψ∗β(∂/∂z) is semisimple
on a dense subset of T 2. Then, ψ is of finite type.
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Example. Let ϕ : T 2 −→ N be a non-conformal harmonic map into a rank one

symmetric space of compact type. Then, ϕ is of finite type (see [B-F-P-P]).

Thus, we work on a question ”What kind of harmonic two-tori in complex Grassmann

manifolds and quaternionic projective spaces are covered by primitive harmonic maps

ψ : T 2 −→ G/K with ψ∗β0 being semisimple ?”.

Let ϕ : M −→ Gk(C
n) be a non-superminimal harmonic map of a Riemann surface.

Suppose that the strong isotropy order of ϕ is r. Then, we have a harmonic sequence

V0 → V1 → · · ·→ Vr−1 → R. For notational simplicity, set Vr = R. Let ki be tha rank of

Vi for i = 0, 1, · · · , r − 1, where k0 = k. Set G = SU(n). Let N = SU(n)/S(U(k0)× · · · ×
U(kr−1) × U(n −

Pr−1
i=0 ki)) be the flag manifold. Any point x of N may be expressed as

x = (w0, w1, · · · , wr), where wi is a ki-plane for i = 0, 1, · · · , r−1 and wr is a (n−
Pr−1

i=0 ki)-

plane. Let p : N −→ Gk(C
n) be the projection map which assigns to the flag its first

element ; p(w0, w1, · · · , wr) = w0.
Fix any point x = (w0, w1, · · · , wr) ∈ N and define Q ∈ G by

Q = ζi on wi for i = 0, · · · , r

where ζ = exp(2π
√−1/r + 1). Then, τ = AdQ is an order (r + 1)-automorphism of G

and the identity component of its fixed set is S(U(k0)× · · · ×U(kr−1)×U(n−
Pr−1

i=0 ki)),

which we denote by K. Thus, N = G/K becomes an (r + 1)-symmetric space. We define

a map ψ :M −→ N = G/K by

ψ(x) = ((V0)x, (V1)x, · · · , (Vr)x), for x ∈M .

Then, ϕ = p ◦ ψ. We have the following :

Proposition 2.1 ([U1]). A
Vi,V

⊥
i0 is [G1]-valued for i = 0, · · · , r. Moreover, ψ is a primitive

harmonic map.

In fact, take ψ(x)(x ∈M) as the base point of N . Then, we see that AdQ(AVi,V
⊥
i0 ) =

ζA
Vi,V

⊥
i0 . Moreover, since

ψ∗β(∂/∂z) =
rX
i=0

A
Vi,V

⊥
i0 ,
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we find that ψ is a primitive harmonic map. Therefore, it remains to know the answer to

the question ”When is ψ∗β0 semisimple ?”.

3. Statement of results

Let ϕ : M −→ Gk(C
n) be a non-superminimal harmonic map with strong isotropy

order r. Let ψ : M −→ N = G/K be a primitive harmonic map obtained by lifting ϕ

to an (r + 1)-symmetric space G/K as in Section 2. We define the first return map AFR0

of ϕ as in Section 1. Then, our idea to settle down the question raised at the end of the

previous section is to link the semisimplicity of AFR0 with the semisimplicity of ψ∗β0. In

fact, we have a following answer :

Lemma 3.1 ([U1]). If AFR0 is semisimple and invertible, then ψ∗β(∂/∂z) is semisimple.

By Theorem 2.1, Proposition 2.1 and Lemma 3.1, we have the following theorem :

Theorem 3.1 ([U1]). Let ϕ : T 2 −→ Gk(C
n) be a harmonic map. If the first return

map AFR0 for ϕ is semisimple and invertible on a dense subset of T 2, then ϕ is covered by

a primitive harmonic map of finite type into SU(n)/S(U(k) × · · · × U(k) × U(n − rk)),
where r is the strong isotropy order of ϕ.

Using Theorem 3.1, we may obtain some answers to the problems of constructing

harmonic two-tori in complex Grassmann manifolds and quaternionic projective spaces.

Before stating our resuls, we give some definitions :

Definition. Let ϕ be a harmonic map with harmonic sequence {Vi} of the bundles,
where V0 = V (ϕ).

(1) If rankV1 = rankV0, then V0 is obtained from V1 by V0 = ImA
V1,V

⊥
100 . In general,

if rankVi = rankV0, then V0 is obtained from Vi by the successive applications of this

procedure. In this case, we say that V0 is obtained from Vi by the flag transforms.

(2) If rankV1 < rankV0, then there is a rank s anti-holomorphic subbundle F of (V1 ⊕
ImA

V1,V
⊥
100 )⊥, where s = rankV0 − rankV1, such that V0 = F ⊕ ImAV1,V

⊥
100 . Conversely,

any harmonic map ϕ with reducible A
V0,V

⊥
00 is constructed from a harmonic map ψ with

V1 = V (ψ) in this way. In this case, we say that ϕ is obtained from ψ by the extension.
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For example, if there is a positive integer k such that rankVi = rankV0 for i =

1, · · · , k− 1 and rankVk < rankV0, then Vk−1 is obtained from Vk by the extension and V0

is obtained from Vk−1 by the (k − 1)-times flag transforms.

Theorem 3.2 ([U1]). Let ϕ : T 2 −→ G2(C
4) be a weakly conformal non-supermi-

nimal harmonic map. Then, either ϕ is constructed from a harmonic map into CP 3 by

extension and flag transforms or ϕ is of finite type.

Theorem 3.3 ([U1]). Let ϕ : T 2 −→ G2(C
2n) be a harmonic map with strong isotropy

order n − 1. If ϕ has isotropy order ≥ n, then either ϕ is constructed from a harmonic

map into CP 2n−1 by extension and flag transforms or ϕ is of finite type.

Example. Suppose that d = 1 and ξ0 = λ−1η−1+λη1, where η1 =

Ã
02 J
√−1I2 02

!
with

J =

Ã√−1 0

0 −√−1

!
. Then, η−1 = tη1 and [η1, η−1] = 0. Thus, F = exp(zη1) exp(zη−1)

and ϕ = π ◦ F is a weakly conformal non-superminimal harmonic map of a square torus

into G2(C
4).

Next, let η1 =

⎛⎜⎝
02 02 J
√−1I2 02 02

02
√−1I2 02

⎞⎟⎠. Then, η−1 = tη1 and [η1, η−1] = 0. Thus,

F = exp(zη1) exp(zη−1) and ϕ = p ◦ π ◦ F is a non-superminimal harmonic map of a

square torus into G2(C
6) which has strong isotropy order 2 and isotropy order ≥ 3.

For harmonic tori in quaternionic projective space HPn, we may apply Theorem 3.1

and obtain some results. Let J : C2n −→ C2n be the conjugate linear map given by left

multiplication by a unit quaternion, where we use an identification C2n ∼= Hn. We regard

HPn−1 as the totally geodesic submanifold of G2(C2n) as follows :

HPn−1 = {V ∈ G2(C2n) | V = JV } ,

that is, the set of all complex 2-dimensional subspaces of C2n which are closed under the

action J .

Definition. Let ϕ :M −→ HPn−1 ⊂ G2(C2n) be a harmonic map. We say that ϕ is a
quaternionic pair by the flag transforms of ψ if there is a harmonic map ψ :M −→ CP 2n−1
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and an integer k such that

V (ϕ) = Vk(ψ)⊕ JVk(ψ) .

Now, our results are the following :

Theorem 3.4 ([U2]). Let ϕ : T 2 −→ HP 2 ⊂ G2(C6) be a non-superminimal harmonic
map of a two-torus. Then, either ϕ is a quaternionic pair by the flag transforms of a

harmonic map into CP 5, or ϕ is covered by a primitive harmonic map of finite type into

HP 2 or Sp(3)/Sp(1)×U(2) according as the isotropy order of ϕ is one or two, respectively,

where U(2) is embedded in Sp(2) by A→
Ã
A 0

0 A

!
.

Theorem 3.5 ([U2]). Let ϕ : T 2 −→ HP 3 ⊂ G2(C8) be a non-superminimal harmonic
map of a two-torus. If the strong isotropy order of ϕ is odd, then ϕ is covered by a primitive

harmonic map of finite type into HP 3 or Sp(4)/Sp(1) × Sp(1) × U(2) according as the
strong isotropy order of ϕ is one or three. If the strong isotropy order of ϕ is even, then ϕ

is obtained by either of the following methods :

(1) If det(AFR) 6= 0, then ϕ is covered by a primitive harmonic map of finite type into

Sp(4)/Sp(1)× Sp(1)× U(2).
(2) If det(AFR) ≡ 0, then either ϕ is a quaternionic pair by the flag transforms of a

harmonic map into CP 7, or ϕ is obtained from ϕ1 : T
2 −→ G2(C

8), which has strong

isotropy order 3 and satisfies V−1(ϕ1) = JV (ϕ1), by the backward replacement. Moreover,

ϕ1 is obtained by either of the following methods : (2-1) ϕ1 is covered by a primitive

harmonic map of finite type into SU(8)/S(U(2)×U(2)×U(2)×U(2)), (2-2) ϕ1 is obtained
by the forward replacement from some ϕ2, which is quaternionic and has strong isotropy

order 3 and is covered by a primitive harmonic map into Sp(4)/Sp(1)×Sp(1)×U(2), (2-3)
ϕ1 is obtained from a harmonic map into CP 7 by the extension and flag transforms.

Remark. Any non-superminimal harmonic map ϕ : T 2 −→ HPn−1 with odd isotropy

order has the first return map of the following form : AFR0 = aI2 with a non-zero on a

dense subset of T 2. Hence, Theorem 3.1 implies that ϕ is of finite type.
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