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Abstract. In [19], McIntosh proved that some class of pluriharmonic maps from
complex vector spaces into projective unitary groups correspond to maps con-
structed from triplets (X,π,L), consisting of auxiliary Riemann surfaces X, and
rational functions π and line bundles L on X. Such triplet is called a spectral data.
McIntosh thus realized the moduli space of such pluriharmonic tori in projective
unitary groups as a subset of the moduli space of these spectral data.
Therefore it seems natural to ask the following: Which spectral data corresponds

to a pluriharmonic torus in a projective unitary group?
In this paper, we give a partial answer to this problem. More precisely, we

prove a criterion on the periodicity of pluriharmonic maps constructed from the
spectral data whose spectral curves are smooth rational or elliptic curves.
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1. Introduction

In [17], McIntosh proved that every non-isotropic harmonic torus in a complex pro-

jective space corresponds to a map constructed from a triplet (X,π,L), consisting of
an auxiliary algebraic curve X, and a rational function π and a line bundle L on X.
Such triplet is called a spectral data. In [19], McIntosh also constructed new general-

ized spectral data which produce pluriharmonic maps from complex vector spaces into

complex Grassmann manifolds or projective unitary groups.

Therefore it seems natural to ask the following: Which spectral data correspond to

harmonic tori in complex Grassmann manifolds or projective unitary groups?

In this paper, we give a partial answer to this problem. More precisely, we prove a

criterion on the periodicity of harmonic maps constructed from the spectral data whose

spectral curves are smooth rational or elliptic curves.

Before describing the plan of this paper, we now review briefly McIntosh’s results

and state our main theorems.

McIntosh [19] has constructed a significant correspondence between the following

two spaces: the space of pluriharmonic maps ψ : Ck → Grk,n+1 or ψ : Cn+1 → PUn+1
of some class, up to isometries, and that of triplets (X,π,L) consisting of a compact
Riemann surface X(which we call the spectral curve for ψ), a meromorphic function π

on X and a line bundle L over X, which are required to satisfy certain conditions.
This correspondence yields a pluriharmonic map from a spectral data in the following

fashion. Take a spectral data (X,π,L). On the Jacobian variety J(X) of the spectral
curve X, we consider a l(= k or n+1)-dimensional linear flow L : Cl → J(X), z 7→ L(z).

Then we know that each line bundle contained in this flow has the following properties.

Denoting by H0(X,L⊗L(z)) the space of global holomorphic sections of L⊗L(z), we
see that the dimension of H0(X,L⊗L(z)) is n+1 if the degree of π is n+1. Let R be
the ramification divisor of π. Then, since (L⊗ L(z))⊗ ρ∗X(L⊗ L(z)) is isomorphic to
the divisor line bundle OX(R), each line bundle L ⊗ L(z) has a natural bilinear form
h via a trace map H0(X,OX(R))→ H0(P1,OP1) ∼= C, which is induced from π. Thus
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we obtain a vector bundle W of rank n+ 1 over Cl with the fiber metric h, where the
fiber of W at z ∈ Cl is given by H0(X,L⊗ L(z)).
Finally, we construct pluriharmonic maps by using ideal sheaves and connections of

W .

In connection with the periodicity, McIntosh observed that pluriharmonic maps as-

sociated to the above spectral data (X,π,L) has a period v if a certain homomorphism
from Cl to a generalized Jacobian J(Xo) has a period v. However, it is generally
hard to compute this homomorphism. In this paper, we compute this homomorphism

explicitly.

Now we summarize the content of each section.

In Section 2, we recall the definition of the spectral data, and review, with a slight

improvement, McIntosh’s construction of pluriharmonic maps in terms of these spectral

data.

In Section 3, all spectral data with the smooth rational spectral curve are classi-

fied (Theorems 3.9 and 3.10), and corresponding pluriharmonic maps are explicitly

constructed (Theorems 3.11 and 3.16). Moreover, we give a sufficient condition for a

constructed pluriharmonic map to be periodic (Theorems 3.13 and 3.18).

In Section 4, the proofs of Theorems 3.11 and 3.16 are given. Section 5 is devoted

to proving Theorems 3.13 and 3.18.

2. Construction of pluriharmonic maps into projective unitary groups

from spectral data

2.1. Spectral data. Let P1 be the smooth rational curve and λ an affine coordinate

on it. Let ρ be an anti-holomorphic involution on P1 defined by λ 7→ 1/λ. Then the

fixed point set of ρ consists of the equator S1 defined by {λ ∈ P1 | |λ| = 1}.
First we recall the definition of a spectral data introduced by McIntosh (cf. [19]).

Definition 2.1. A spectral data is a triplet (X,π,L) of isomorphism classes which

satisfies the following conditions:

(1) X is a complete, connected, algebraic curve of arithmetic genus p, with a real

involution ρX .

(2) π is a meromorphic function on X of degree N = n + 1 satisfying π ◦ ρX =

1/π, with n + 1 zeros P1, . . . , Pn+1 and n + 1 poles Ql = ρX(Pl). The points

P1, . . . Pn+1 may occur in multiple degree. We regard X as a covering of degree

n+ 1 of the rational curve P1 via π.
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(3) L is a line bundle over X of degree p+ n satisfying

L⊗ ρX∗L ∼= OX(R),
where R is the ramification divisor for π. By identifying L with a divisor line
bundle OX(D), we can find a meromorphic function f on X which satisfies the

following conditions:

(a) The divisor (f) of f is given by D + ρ∗XD −R and ρ∗Xf = f .

(b) Let XR be the preimage of S1 by π. Then f is non-negative on XR.

(4) π has no branch points on S1 and ρX fixes every point of XR.

Two triplets are the same if there exists a biholomorphic map between spectral curves

which carries the real structure, the meromorphic function and the isomorphism class

of the line bundle each other.

When X is a compact connected Riemann surface, the above definition of spectral

data becomes simpler.

Theorem 2.2. Let X be a compact connected Riemann surface. A triplet (X,π,L) is
a spectral data if and only if it satisfies the following conditions:

(1) X is a compact connected Riemann surface of genus p, with real involution

ρX . The set X \ Xρ consists of two connected components XN , XS, where

Xρ is the fixed points of ρX . Moreover, X
ρ decomposes into the disjoint union

Xρ =
`ν(X)
i=1 S1i with S

1
i = S

1, that is, ν(X) copies of a loop.

(2) π is a meromorphic function on X of degree N = n + 1, which satisfies either

that all poles are contained in XN and all zeros are contained in XS , or that

all poles are contained in XS and all zeros are contained in XN . Moreover, π

has a point x ∈ Xρ such that |π(x)| = 1 and the principal divisor of π has the
form

Pn+1
i=1 Pi −

Pn+1
i=1 Qi with Qi = ρX(Pi).

(3) L is a line bundle over X of degree p+ n satisfying

D + ρX∗(D) ∼= R, δ(L) = 0,
where R is the ramification divisor for π, D is a divisor such that L ∼= OX(D),
and δ(L) is a number defined as follows:
δ(L) = ν(X)− |]{si ∈ Λ | g(si)/g(s1) > 0}− ]{si ∈ Λ | g(si)/g(s1) < 0}|,

where g is a meromorphic function with the divisor (g) = D+ ρX∗D−R and Λ
is the set of points s1, s2, . . . , sν(X) such that si ∈ S1i and g(si) 6= 0,∞.

(The proof of this theorem is in [30].)
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2.2. A Hermitian inner product on a space of global holomorphic sections.

From now on, for a Riemann surface X and a sheaf F on X, we denote by Hi(X,F)
and Hi(Y,F) the i-th cohomology of the sheaf of holomorphic sections of F and its

restriction to an open subset Y of X, respectively. We also denote the dimension of

Hi(X,F) by hi(X,F).
Let (X,π,L) be a spectral data as in Definition 2.1. By identifying L with a divisor

line bundle OX(D), we equip H0(X,L) with a positive definite Hermitian form h as

follows.

For given u, v ∈ H0(X,L), we define a rational function h(u, v) on P1 by
h(u, v)(p) =

X
x∈π−1(p)

f(x)u(x)(v ◦ ρX)(x),(2.3)

where p is a point of P1. Then it is known that h(u, v) is a constant function and the
following holds.

Theorem 2.4. ([18]) The Hermitian form h is positive definite on H0(X,L). More-
over, π∗L is a trivial vector bundle of rank (n+ 1) over P1, where n+ 1 is the degree
of π.

Let η be a point on S1 and π−1(η) = {η0, . . . , ηn}, the inverse image of 1 by π, and

θi(0 5 i 5 n) a local trivialization for L over a neighbourhood of ηi. Using these local
trivializations, the Hermitian form h in (2.3) has also the following expression. For

u ∈ H0(X,L), let u0, . . . , un be the complex numbers defined by u(ηi) = uiθi(ηi). For
v ∈ H0(X,L), we define the complex numbers v0, . . . , vn in a similar way. Then (2.3)
becomes

h(u, v) =
nX
i=0

aiuivi,(2.5)

where a0, . . . , an are positive real numbers depending only on the choice of θ0, . . . , θn.

From the result above we obtain an orthonormal basis {σi} of H0(X,L) such that
σi ∈ H0(X,L(−η0 − · · ·− ηi−1 − ηi+1 − · · ·− ηn))

for 0 5 i 5 n.

2.3. Construction of pluriharmonic maps into projective unitary groups.

Definition 2.6. A spectral data of type Prn+1 is a spectral data (X,π,L) as in The-
orem 2.2 which satisfies the following conditions: The degree of π is n + 1 (n = 1).

Moreover π has distinguished n+ 1 zeros, that is

Pi 6= Pj for i 6= j.
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Let (X,π,L) be a spectral data of type Prn+1. It will be shown that the correspond-
ing map is a pluriharmonic map from Cn+1 to PUn+1.
Let π−1(1) = {η0, . . . , ηn}, the inverse image of 1 by π. Applying the method in

Section 2.2 to η = 1, we obtain an orthonormal basis {σi} of L such that
σi ∈ H0(X,L(−η0 − · · ·− ηi−1 − ηi+1 − · · ·− ηn))

for 0 5 i 5 n.
Let π−1(−1) = {ν0, . . . , νn}, the inverse image of −1 by π. Applying the method

in Section 2.2 to η = −1, we obtain another orthonormal basis {ρi} of L such that
ρi ∈ H0(X,L(−ν0 − · · ·− νi−1 − νi+1 − · · ·− νn))

for 0 5 i 5 n.
Next we construct a line bundle L(z) with a complex parameter z = (z1, . . . , zn+1) ∈

Cn+1. For 1 5 l 5 n+1, let U(Pl) be a neighbourhood of Pl and U(Ql) a neighbourhood
of Ql defined by U(Ql) = ρX(U(Pl)). For 1 5 l 5 n + 1, let ζl be a meromorphic

function on U(Pl) ∪ U(Ql) satisfying π = ζl and ζl ◦ ρX = 1/ζ̄l. We fix an open cover
XA∪XI of X, where XA = X \{P1, . . . , Pn+1, Q1, . . . , Qn+1} and XI = ∪n+1l=1 (Pl∪Ql).
Let L(z) be the unique line bundle with local trivializations θzA and θzI over XA and

XI respectively, such that

θzI = exp

Ã
n+1X
l=1

¡
zkζ

−1
l − z̄lζl

¢!
θzA on XA ∩XI .(2.7)

We denote by J(X)R the connected component of the kernel of J(X)→ J(X),OX(D) 7→
OX(D + ρ(D)), which contains the trivial line bundle.

Let J(Xm)R be a bundle over J(X)R whose fiber Jm(L) at L ∈ J(X)R is given by

Jm(L) =

nY
i=1

(Hom (L|ηi , L|η0) \ {0}),

and let J(Xn)R be a bundle over J(X)R whose fiber Jn(L) at L ∈ J(X)R is given by

Jn(L) =
nY
i=1

(Hom (L|νi , L|ν0) \ {0}).

Setting Jo(L) = Jm(L)× Jn(L) for L ∈ J(X)R, we get a new bundle
J(Xo)R =

[
L∈J(X)R

Jo(L)

over J(X)R. We define a map L̂ : Cn+1 → J(Xo)R by z 7→ (L(z), gz1 , . . . , g
z
n, h

z
1, . . . , h

z
n),

where gzi is an element of Hom (L(z)|νi , L(z)|ν0) \ {0} (∼= C∗) defined by the condition
that gzi maps θA(z)|νi to θA(z)|ν0 and hzi an element of Hom (L(z)|ηi , L(z)|η0) \ {0} (∼=
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C∗) defined by the condition hzi maps θA(z)|ηi to θA(z)|η0 . Then we see that L̂ is a
homomorphism from the additive group Cn+1 to J(Xo)R.
For 0 5 i 5 n, let Li be an ideal sheaf of L defined by Li = L(νi −

Pn
j=0 νj). Then

it is known that H0(X,Li ⊗ L) is a 1-dimensional complex vector space for 0 5 i 5 n
and L ∈ J(X)R. Take any nonzero global section ti(L) of Li ⊗ L for 0 5 i 5 n. Next
we define a map pr : J(Xo)R → PUn+1 by (L, g1, . . . , gn, h1, . . . , hn) 7→ [(ψi,j)], where

ψi,j is given by

1

gi (ti/ρi|νi)
⊗ hj

¡
ti/σj |ηj

¢ ∈ L−1|ν0 ⊗ L|η0 .

Here we use the identification

gl(n+ 1) ∼= gl(n+ 1)⊗ L−1|ν0 ⊗ L|η0 , (Mij) 7→ (Mij(1/ρ0)|ν0 ⊗ σ0|η0) .

Let ψ : Cn+1 → PUn+1, z 7→ [(ψi,j(z))] be a map defined as the composition pr ◦ L̂.
Then it is known that ψ is a pluriharmonic map corresponding to the spectral data

(X,π,L).

Theorem 2.8. Let φi(z, x) be a section of L over XA such that φi(z, x)θA(z) can be
extended to a global section of Li ⊗ L(z) and (φi(z, x) − ρi)|νi = 0. Then we get the
another expression for ψi,j(z) (cf. [30])

ψi,j(z) =
φi(z, ηj)

σj(ηj)
for 0 5 i, j 5 n.(2.9)

Before closing this section, we prove the following lemma for later use.

Lemma 2.10. Given a function φ(x) on X, let U and V be neighbourhoods of the set

of the points {x1, . . . xp} which satisfy the following conditions:
(1) {x1, . . . , xp} ⊂ U ⊂ V .
(2) φ(x) is a holomorphic section of OX(M) on X \ U , where M is a divisor on

X \ V .
(3) φ(x) exp(t) extends to V as a holomorphic section of OX(N) on V , where N is

a divisor on U and t is a holomorphic function on V \ {x1, . . . xp}.
Moreover, let L be the unique line bundle with local trivializations θA and θI over

X \ {x1, . . . xp} and V respectively, such that

θI = exp(t) θA on V \ {x1, . . . xp}.(2.11)

Then φ(x) ⊗ θA extends to X as a holomorphic section of F ⊗L, where F ∼= OX(M +

N).
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Proof. From the condition (2), φ(x)⊗ θA clearly belongs to H
0(X \U, OX(M)⊗L) =

H0(X \U, F ⊗L). It suffices to show that φ(x)⊗ θA belongs to H
0(V, OX(N)⊗L) =

H0(V, F ⊗ L). By using (2.11), we see that φ(x) ⊗ θA = φ(x) exp(−t) ⊗ θI on V .

On the other hand, from the condition (3) it follows that φ(x) exp(t) is an element of

H0(V,F) and hence φ(x) ⊗ θA belongs to H
0(V, F ⊗ L). Thus φ(x) ⊗ θA is a global

holomorphic section of F ⊗ L on X.

3. Main results

3.1. Jacobi’s theta functions and Weierstrass’ zeta functions. C. G. J. Jacobi

introduced four functions θ1, θ2, θ3 and θ4 of variables p(u) = exp(π
√−1u) and q =

exp(π
√−1τ ), where u is the usual covering coordinate of an elliptic curve X = C/L

and τ stands for its period ratio with familiar standardization that the imaginary part

Imτ of τ is positive. If we take L to be Z⊕ τZ for simplicity, then these Jacobi’s theta
functions are given as follows:

θ1(u) = θ1(u|τ) =
√−1

X
(−1)np2n−1q(n−1/2)2 ,

θ2(u) = θ2(u|τ) =
X

p2n−1q(n−1/2)
2

,

θ3(u) = θ3(u|τ) =
X

p2nqn
2

,

θ4(u) = θ4(u|τ) =
X
(−1)np2nqn2 .

Here the sums are taken over n ∈ Z. Under the addition of half-periods, these
functions transform according to the following table.

u+ 1/2 u+ τ/2 u+ 1/2 + τ/2 u+ 1 u+ τ u+ 1 + τ

θ1 θ2
√−1aθ4 aθ3 −θ1 −bθ1 bθ1

θ2 −θ1 aθ3 −√−1aθ4 −θ2 bθ2 −bθ2
θ3 θ4 aθ2

√−1aθ1 θ3 bθ3 bθ3
θ4 θ3

√−1aθ1 aθ2 θ4 −bθ4 −bθ4
For example, we have the transformation rules

θ1(u+ τ) = −b(u)θ1(u),(3.1)

θ1(u+ 1/2) = θ2(u),(3.2)

θ1(u+ τ/2) = −√−1a(u)θ4(u),(3.3)

θ3(u+ τ/2) = a(u)θ2(u),(3.4)

θ4(u+ 1/2) = θ3(u),(3.5)
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where a(u) = p(u)−1q−1/4 and b(u) = p(u)−2q−1. Special values of these functions are

obtained as follows:

lim
t→∞ q

−1/4 ∂θ1
∂u
(0|√−1t) = 2π, lim

t→∞ q
−1/4θ2(0|

√−1t) = 2,
lim
t→∞ θ3(0|

√−1t) = 1, lim
t→∞ θ4(0|

√−1t) = 1.
(3.6)

On the other hand, Weierstrass’ zeta function ζw is defined by

ζw(u) = ζw, τ (u) =
1

u
+

X
ω∈L \ (0,0)

½
1

(u− ω)
+
u

ω2
+
1

ω

¾
.(3.7)

Note that these functions have the following properties. θ1 is a odd function. θ2, θ3

and θ4 are even functions. Concerning ζw, there exist complex numbers A = Aτ and

B = Bτ depending only on τ such that

ζw(u+ 1)− ζw(u) = A, ζw(u+ τ)− ζw(u) = B, Aτ −B = 2π√−1.(3.8)

Moreover, if τ is pure imaginary, we have θ1(u) = θ1(u), ζw(u) = ζw(u), A = A and

B = −B.
For further details and formulas regarding these functions, we refer the reader to

McKean and Moll [23, Chapter 3].

Our main theorems which refine the correspondence proved by McIntosh may be

stated in the following.

3.2. Spectral data with smooth rational or elliptic spectral curves. To de-

scribe spectral data with the rational spectral curve, we prepare the following functions.

For any point P on P1, we define a meromorphic function ΛP (λ) by

ΛP (λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

P

(λ− P )
(λ− 1/P̄ ) for λ(P ) ∈ C \ {0}

1/λ for λ(P ) =∞
λ for λ(P ) = 0.

Theorem 3.9. Let X be the smooth rational curve. Then (X,π,L) is a spectral data
if and only if it is isomorphic to the following:

(1) (X, ρX) is real isomorphic to (P1, ρ). By the affine coordinate λ, π is expressed

as

π(λ) = α−10
n+1Y
j=1

ΛPj (λ), α0 =
n+1Y
j=1

ΛQj (1).

Here Pj ∈ XS = {λ ∈ X | |λ| < 1} and Qj = 1/Pj for any 1 5 j 5 n+ 1.
(2) L is a line bundle of degree n.
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For the above spectral data (P1,π,L) and any point P on P1, we define a meromor-
phic function σP (λ) by

σP (λ) =

⎧⎨⎩
λ− P

λ− Pfix for λ(P ) ∈ C
1/(λ− Pfix) for λ(P ) =∞

Here Pfix is a fixed point on X such that Pfix /∈ ∪nj=0(Pj ∪ Qj ∪ S1 ∪ Rj). Moreover
{η0, . . . , ηn} is the inverse image π−1(1) of 1 by π and R+ =

Pn
j=1Rj is a divisor

given by the intersection of XS with R, that is, R+ = X
S ∩R.

Next, we consider the case of a smooth elliptic spectral curve X = Xτ . Let us denote

by Picd(X) and J(X) the set of line bundles on X of degree d and the Jacobian of X,

respectively. Note that J(X) can be identified with X = C/(Z⊕ Zτ). We then define
a biholomorphic map J : Pic0(X) → J(X) by J(L) =

Pk
j=1(Pj − Qj) (mod Z⊕ Zτ),

provided that L ∈ Pic0(X) is expressed as a divisor line bundle OX(
Pk

j=1(Pj −Qj)).
For any point P on C, it is more convenient to define a holomorphic function θ(P, u)

on C by

θ(P, u) = θ1(u− P ) = θ1(u− P |τ )
where θ1 is the Jacobi’s theta function(cf. section 3.1).

In connection with spectral data with smooth elliptic spectral curves, we shall see

the followings:

Theorem 3.10. Let X be a smooth elliptic curve. Then (X,π,L) is a spectral data if
and only if it is isomorphic to the following:

(1) X is an elliptic curve Xτ = C/(Z ⊕ Zτ), where τ is a pure imaginary number√−1t with t > 0. ρX is an anti-holomorphic involution induced by the usual

conjugation of C. Regarded as a doubly periodic meromorphic function on C, π
is expressed as

π(u) = C

Qn
j=1 θ(Pj , u) · θ(Pn+1 +W,u)Qn+1

j=1 θ(Qj , u)

Here Pi ∈ XS = {x ∈ X | 0 < Imx < Im τ/2 (mod Im τZ)} and Qi =
Pi (mod Z⊕ Zτ ) for any 0 5 i 5 n+ 1; W =

Pn+1
i=1 Pi −

Pn+1
i=1 Qi; W belongs

to Z⊕ Zτ ; and C is the unique constant such that π(0) = 1.

(2) Let r : Picn+1(X) → Pic0(X) be a map defined by F 7→ F ⊗OX(−R+), where
R+ =

Pn
j=0Rj is a divisor of degree n + 1 given by the intersection of X

S

with R, that is, R+ = X
S ∩ R. Then, L is an element of the inverse image of¡

Z⊕√−1R¢ / (Z⊕ τZ) by the composition J ◦ r.
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3.3. Pluriharmonic maps into projective unitary groups. Our main theorems

concerning projective unitary groups, which refine the correspondence proved by McIn-

tosh, may be stated as follows. (See Section 2.3 for the detail of this correspondence.)

Theorem 3.11. Let (X, π, L) be of type Prn+1 among spectral data as in Theorem 3.9.
Choosing a complex coordinate on the source suitably, the pluriharmonic map Ψ : Cn+1 →
PUn+1 corresponding to the above spectral data is given by

z 7→ [(Ψi,j(z))],

where

Ψi,j(z) = exp

⎛⎝n+1X
j=1

ΛQj (ηi)zj −
n+1X
j=1

ΛPj (ηi)zj

⎞⎠ ·
Qi−1
k=0 σ

νk(ηj) ·
Qn
k=i+1 σ

νk(ηj)
Qn
k=1 σ

Rk(νi)Qn
k=1 σ

Rk(ηj)
Qi−1
k=1 σ

νk(νi)
Qn
k=i+1 σ

νk(νi)
,

(3.12)

where {η0, . . . , ηn} is the inverse image π−1(1) of 1 by π and {ν0, . . . , νn} is the
inverse image π−1(−1) of −1 by π.

Furthermore we obtain the following

Theorem 3.13. Let Ψ : Cn+1 → PUn+1 be the pluriharmonic map in Theorem 3.11.

Then Ψ is a lift of a map from Cn+1/Γ with a p-dimensinal lattice Γ = ⊕pl=1Zvp ⊂ Cn+1
if the set V =

T
15i52n Vi contains Γ, where V1, . . . , V2n are the sets defined by

Vi = {z ∈ Ck | fi(z) =
kX
l=1

βi,lzl ∈ π
¡
R⊕√−1Z¢}(3.14)

where f0, . . . f2n are linear holomorphic functions on Cn+1 defined by

βi,l =

(
ΛQl(νi) (1 5 i 5 n)
ΛQl(ηi) (n+ 1 5 i 5 2n).

Corollary 3.15. Let (X, π, L) be a spectral data in Theorem 3.11 such that the degree
of π is 2. Then the corresponding pluriharmonic map Ψ : C → PU2 in Theorem 3.11

is always doubly periodic with periods v1, v2, where v1 and v2 are complex numbers in

the set

Zv+ ⊕ Zv− = Z π (β1Im(β2/β1))
−1 ⊕ Zπ (β2Im(β1/β2))

−1 .

Here β1 = Λ
Q1(η1)− ΛQ1(η0) and β2 = Λ

Q1(ν1)− ΛQ1(η0).

Proof. In this case, the set V in Theorem 3.13 reduces to Zv+ ⊕ Zv−. Hence Corol-
lary 3.15 follows from Theorem 3.13.

Now we consider the case of a smooth elliptic spectral curve X.
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Theorem 3.16. Let (X, π, L = OX(D)) be of type Prn+1 among spectral data as in
Theorem 3.10. Choosing a complex coordinate on the source suitably, the pluriharmonic

map Ψ : Cn+1 → PUn+1 corresponding to the above spectral data is given by

z 7→ [(Ψi,j(z))],

where Ψi,j(z) is a function defined by

Ψi,j(z) =
μjeμi
exp

³Pn+1
k=1 ([ζw(ηj − Pk)−A ηj ]zk − [ζw(ηj −Qk)−A ηj ]zk)

´
exp

³Pn+1
k=1 ([ζw(νi − Pk)−A νi]zk − [ζw(νi −Qk)−A νi]zk)

´
·
Qn
k=0 θ(Rk, νi)

Qj−1
k=0 θ(νk, ηj) · θ(bνi +Pn+1

k=1(zk − zk), ηj)
Qn
k=j+1 θ(νk, ηj)Qn

k=0 θ(Rk, ηj)
Qj−1
k=0 θ(νk, νi) · θ(bνi +Pn+1

k=1(zk − zk), νi)
Qn
k=j+1 θ(νk, νi).

(3.17)

Here {η0, . . . , ηn} and {ν0, . . . , νn} are the inverse images of 1 and −1 by π respec-

tively, μi and eμi are constants given by
μi = exp

¡
2π
√−1(D −R+)Im ηi/t

¢
, eμi = exp ¡2π√−1(D −R+)Im νi/t

¢
.

Moreover bνi is a constant defined by bνi = D + νi −
Pn

j=0 νj and A is a constant given

in the equation (3.8).

Moreover we prove the following

Theorem 3.18. Let Ψ : Cn+1 → PUn+1 be the pluriharmonic map in Theorem 3.16.

Then Ψ is a lift of a map from Cn+1/Γ with a p-dimensinal lattice Γ = ⊕pl=1Zvp ⊂ Cn+1
if the set V =

T
05i52n Vi contains Γ, where V0, . . . , V2n are the sets defined by

Vi = {z ∈ Ck | fi(z) =
n+1X
l=1

βi,lzl ∈ π
¡
R⊕√−1Z¢}(3.19)

where f0, . . . f2n are linear holomorphic functions on Cn+1 defined by

βi,l =

⎧⎪⎨⎪⎩
([ζw(ν0 − Pl)− ζw(νi − Pl)−B (ν0 − νi)τ

−1]) (1 5 i 5 n)
([ζw(η0 − Pl)− ζw(ηi − Pl)−B (η0 − ηi)τ

−1]) (n+ 1 5 i 5 2n)
2π/t (i = 0).

4. Explicit construction of pluriharmonic maps

In this section we prove Theorems 3.11 and 3.16.

First, we construct special orthonormal bases of certain spaces of global sections of

holomorphic line bundles. Let (X,π,L) be a spectral data as in Theorem 3.9. We may

assume that π, R and L are of the following form:

π(λ) = α−10

n+1Y
j=1

ΛPj (λ), R = D + ρX(D), L = OX(D),
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where α0 is a constant as in Theorem 3.9 and D is a divisor defined by D = R∩XS =Pn
i=1Ri.

Next we construct a special orthonormal basis of global sections of L = OX(
Pn

i=1Ri)

following the method explained above. Here we choose f = 1 as a meromorphic function

on X in Condition (3) of Definition 2.1. For 0 5 i 5 n, let us denote by σi the following
element

σi(λ) =

Qn
j=1 σ

Rj (ηi)Qi−1
j=0 σ

ηj (ηi)
Qn
j=i+1 σ

ηj (ηi)

Qi−1
j=0 σ

ηj (λ)
Qn
j=i+1 σ

ηj (λ)Qn
j=1 σ

Rj (λ)
.

Then we see that σi ∈ H0(X,L(−η0 − · · ·− ηi−1 − ηi+1 − · · ·− ηn)) and h(σi,σi) = 1

for 0 5 i 5 n. Thus we get an orthonormal basis {σi}05i5n of H0(X, L), that is,
h(σi, σj) = δij . Similarly, by replacing ηi by νi, we get another orthonormal basis

{ρi}05i5n of H0(X, L), that is, h(ρi, ρj) = δij .

Let
³
X = X√−1t,π,OX(D) = OX(

Pk+n+1
i=1 Ei −

Pk
i=1 Fi)

´
be a spectral data as in

Theorem 3.10.

Next we construct a special orthonormal basis of global sections of L = OX(
Pd+n+1

i=1 Ei−Pd
i=1 Fi) following the method used in Section 2.2. Here we choose

f =

Qk+n+1
j=1 θ(Ej , u)Qk

j=1 θ(Fj , u)
Qn
j=0 θ(Rj , u)

·
Qk+n+1
j=1 θ(Ej , u)Qk

j=1 θ(Fj , u)
Qn
j=0 θ(Rj , u)

as a meromorphic function on X in Condition (3) of Definition 2.1. Let μi be the con-

stant in Theorem 3.16 and set bηi =Pk+n+1
i=1 Ei−

Pk
i=1 Fi−(η0 + · · ·+ ηi−1 + ηi+1 + · · ·+ ηn).

Denoting by σi the element

μ−1i

Qn
j=0 θ(Rj , ηi) ·

Qk
j=1 θ(Fj , u) ·

Qi−1
j=0 θ(ηj , u) · θ(bηi, u) ·Qn

j=i+1 θ(ηj , u)Qi−1
j=1 θ(ηj , ηi) · θ(bηi, ηi) ·Qn

j=i+1 θ(ηj , ηi) ·
Qk+n+1
j=1 θ(Ej , u)

,

e see that σi ∈ H0(X,L(−η0−· · ·−ηi−1−ηi+1−· · ·−ηn)) and h(σi,σi) = 1 for 0 5 i 5 n.
Thus we get an orthonormal basis {σi}05i5n of H0(X, L), that is, h(σi, σj) = δij .

These are well-defined by the following lemma.

Lemma 4.1. The above constants bηi are not equal to ηi (mod Z⊕ Zτ ).

Proof. If bηi = ηi mod Z ⊕ Zτ , then h(σi, σi) = 0, which is a contradiction because h
is positive definite.

Similarly, by replacing ηi by νi, we get another orthonormal basis {ρi}05i5n ofH0(X, L),
that is, h(ρi, ρj) = δij .
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4.1. Explicit construction of pluriharmonic maps into projective unitary

groups. Using the results in Section 2.3, let us now construct pluriharmonic maps

corresponding to spectral data whose spectral curves are smooth rational curves, and

prove Theorem 3.11.

Let (X,π,L) be a spectral data as in Theorem 3.11. We may assume that π, R and

L are of the following form:

π(λ) = α0

n+1Y
j=1

ΛPj (λ), R = D + ρX(D), L = OX(D),

where α0 is a constant as in Theorem 3.9 and D is a divisor defined by D = R∩XS =Pn
i=1Ri. First we prove the following

Lemma 4.2. Let (X,π,L) be a spectral data as above. Define a function ψi(z,λ) on

X with parameter z by

ψi(z, λ) = exp

⎛⎝ kX
j=1

Ã
ΛQj (λ)

zj
κj
− ΛPj (λ)

µ
zj
κj

¶!⎞⎠ · Qn+1
j=1 σ

νj (λ)

σνi(λ)
Qn
j=1 σ

Rj (λ)
.(4.3)

Here κj = (∂ζj/∂λ)|λ=Pj is the value of the differential of the meromorphic function
ζj as in (2.7) at λ = Pj . Then ψi(z,λ)θA(z) is an element of H

0(X, Li ⊗ L(z)) for
any z ∈ Cn+1.

Proof. Denote by D|S the restriction of the divisor D =
Pn

i=1Ri to S = ∪n+1j=1 (Pj∪Qj).
Then, applying Lemma 2.10 to M = D −D|S , N = D|S + Pl −

Pn+1
j=1 Pj , L = L(z),

and φ = ψi, we get the assertion.

Set

φi(z,λ) =
ρi(νi)

ψi(z, νi)
ψi(z,λ).

Owing to (2.9), the corresponding pluriharmonic map ψ : Cn+1 → PUn+1 is given by

z = x+
√−1y 7→ [(ψi,j(z))],

where ψi,j(z) is given by

exp
³Pn+1

k=1

³
ΛQk(ηi)zkκ

−1
k − ΛPk(ηi)zkκ−1k

´´
exp

³Pn+1
k=1

³
ΛQk(νi)zkκ

−1
k − ΛPk(νi)zkκ−1k

´´ · Qi−1
k=0 σ

νk(ηj) ·
Qn
k=i+1 σ

νk(ηj)
Qn
k=1 σ

Rk(νi)Qn
k=1 σ

Rk(ηj)
Qi−1
k=1 σ

νk(νi)
Qn
k=i+1 σ

νk(νi)
.

(4.4)

Define a map F : Cn+1 → Cn+1 by (zj)j 7→ (κjzj)j (1 5 j 5 k). Then the composition
ψ ◦ F gives rise to the pluriharmonic map given in (3.12). This completes the proof of
Theorem 3.11.
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We now construct pluriharmonic maps corresponding to spectral data whose spectral

curves are smooth elliptic curves, and prove Theorem 3.16.

Lemma 4.5. Let
³
X = X√−1t,π,OX(D) = OX(

Pk+n+1
i=1 Ei −

Pk
i=1 Fi)

´
be a spec-

tral data as in Theorem 3.10. Define a function ψi(z, u) on X with parameter z by

ψi(z, u) = exp

⎛⎝ kX
j=1

zj
κj
[ζw(u− Pj)−Au]−

kX
j=1

µ
zj
κj

¶
[ζw(u−Qj)−Au]

⎞⎠
·
Qd
j=1 θ(Fj , u) ·

Qi−1
j=0 θ(νi, u) · θ(bνi +H(z), u)Qn

j=i+1 θ(νi, u)·Qd+n+1
j=1 θ(Ej , u)

.(4.6)

Here ζw is Weierstrass’ zeta function as in (3.7),

H = H(z, z̄) =
kX
j=1

zj
κj
−

kX
j=1

µ
zj
κj

¶
,

A is the constant as in (3.8), and κj = (∂ ζ/∂u)|u=Pj is the value of the differential of
the meromorphic function ζ in (2.7) at u = Pj . Then ψl(z, u)θA(z) is an element of

H0(X, Li ⊗ L(z)) for any z ∈ Ck.

Proof. Denote by D|S the restriction of the divisor
Pd+n+1

i=1 Ei −
Pd

i=1 Fi to S =

∪kj=1(Pj ∪Qj). Then, applying Lemma 2.10 to M = D −D|S −
Pn+1−2k

j=1 Pj+k, N =

D|S + Pl −
Pk

j=1 2Pj , L = L(z), and φ = ψi, we get the assertion.

Set φi(z, u) = ρi(νi)ψi(z, u)/ψi(z, νi). On account of (2.9), the corresponding pluri-

harmonic map ψ : Cn+1 → PUn+1 is given by

z = x+
√−1y 7→ [(ψi,j(z))],

where ψi,j(z) is given by

ψi,j(z) =
μjeμi
exp

³Pn+1
k=1

³
[ζw(ηj − Pk)−A ηj ]zkκ

−1
k − [ζw(ηj −Qk)−A ηj ]zkκ

−1
k

´´
exp

³Pn+1
k=1

³
[ζw(νi − Pk)−A νi]zkκ

−1
k − [ζw(νi −Qk)−A νi]zkκ

−1
k

´´
·
Qn
k=0 θ(Rk, νi)

Qj−1
k=0 θ(νk, ηj)θ(bνi +H(z), ηj)Qn

k=j+1 θ(νk, ηj)Qn
k=0 θ(Rk, ηj)

Qj−1
k=0 θ(νk, νi)θ(bνi +H(z), νi)Qn

k=j+1 θ(νk, νi).
(4.7)

Define a map F : Cn+1 → Cn+1 by zj 7→ κjzj . Then the composition ψ ◦ F gives rise

to the pluriharmonic map given in (3.17). This completes the proof of Theorem 3.16.

5. Computations of homomorphims into generalized Jacobians and

periodicity conditions of pluriharmonic maps

McIntosh studied periodicity conditions of the corresponding pluriharmonic maps

by introducing certain homomorphisms into generalized Jacobians. In this section,
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when X is a smooth rational or elliptic curve, we reformulate McIntosh’s periodicity

conditions by introducing certain families of hyperplanes on complex vector spaces,

and prove Theorems 3.13 and 3.18.

Recall the following result:

Theorem 5.1 ([19]). Pluriharmonic maps ψ : Cn+1 → PUn+1 corresponding to spec-
tral data have a period v if bL has a period v.
5.1. The case of spectral data of type Prn+1 with the rational spectral curve.

Let us determine the map bL when (X, π, L) is a spectral data with the smooth rational
curve as its spectral curve.

First, we compute the map L : Cn+1 → J(X) defined by z = x+
√−1y 7→ L(z). In

the case of the smooth rational curve X, L(z) is always the trivial line bundle over X.

Then

exp

⎛⎝ kX
j=1

Ã
ΛQj (λ)

zj
κj
− ΛPj (λ)

µ
zj
κj

¶!⎞⎠⊗ θA(z)(5.2)

belongs to H0(X,OX) by Lemma 2.10. Moreover we see that this is a non-vanishing
global holomorphic section of OX .
Using (5.2) and H0(X, OX) ∼= C, we see that

θA(z) = C exp

⎛⎝n+1X
j=1

Ã
−ΛQj (λ)

zj
κj
+ ΛPj (λ)

µ
zj
κj

¶!⎞⎠
where C is a non-zero constant.

Now we give an explicit description of bL : Cn+1 → J(Xo)R = J(Xn)R × J(Xm)R.
For 0 5 i 5 n, we define Ai ∈ Hom(O|νi , OX |ν0) by the condition that each Ai

maps the element 1|νi of OX |νi to the element 1|ν0 of OX(−T )|ν0 .
Replacing νi with ηi for 0 5 i 5 n, we get Bi ∈ Hom(OX |ηi , OX |η0). Then the mapbL : Cn+1 → J(Xn)R × J(Xm)R is given by

z = x+
√−1y 7→

³
(hi(z, z̄))15i5n, (gi(z, z̄))15i5n

´
,(5.3)

where gi(z, z̄) and hi(z, z̄) are elements of Hom (O|νi , OX |ν0) and Hom (OX |ηi , OX |η0)
being defined by

gi(z, z̄) = exp(ai(z, z̄))Ai, hi(z, z̄) = exp(bi(z, z̄))Bi,

respectively. Here ai is defined by

ai(z, z̄) =

n+1X
j=1

Ã
− zj
κj
[ΛQj (ν0)− ΛQj (νi)] +

µ
zj
κj

¶
[ΛPj (ν0)− ΛPj (νi)]

!
.
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and bi is defined by replacing νi with ηi in this equation.

Lemma 5.4. For 1 5 i 5 n, ai(z, z̄) and bi(z, z̄) are pure imaginary.

Proof. Using νi = 1/νi and ηi = 1/ηi, we get the desired result.

Thus we can consider bL : Cn+1 → J(Xn)R × J(Xm)R to be a map LT : Cn+1 →
T 2n = S1 × · · · × S1 defined by

z 7→ (exp(a1(z, z̄)), . . . , exp(an(z, z̄), exp(b1(z, z̄)), . . . , exp(bn(z, z̄))) .

We can also consider pr : J(Xo)R → PUn+1 to be a map pr : J(Xo)R → PUn+1.
Then pr is given as follows³

(αpAp)p=1,... ,n , (βpBp)p=1,... ,n

´
7→
·µ

βj
αi
Pi,j

¶¸
05i,j5n

,(5.5)

where α0 = β0 = 1 and Pi,j is given byQi−1
k=0 σ

νk(ηj) ·
Qn
k=i+1 σ

νk(ηj)
Qn
k=1 σ

Rk(νi)Qn
k=1 σ

Rk(ηj)
Qi−1
k=1 σ

νk(νi)
Qn
k=i+1 σ

νk(νi)
.(5.6)

Proposition 5.7. The composition pr ◦ L̂ : Cn+1 → PUn+1 is same as in (4.7).

Proof. Substituting exp(ai) and exp(bi) into αi and βi respectively, we get the desired

result.

Evidently, bL is doubly periodic if and only if LT is doubly periodic. Then we have the
following

Proposition 5.8. The pluriharmonic map ψ : Cn+1 → PUn+1 defined by (4.7), corre-
sponding to a spectral data (X, π, L) is a lift of a map from Ck/Γ with a p-dimensinal
lattice Γ = ⊕pl=1 ⊂ Cn+1 if the set V =

T
15i52n Vi contains Γ, where V1, . . . , V2n are

the sets defined by

Vi = {z ∈ Ck | fi(z) =
kX
l=1

γi,lzl ∈ π
¡
R⊕√−1Z¢}(5.9)

where f0, . . . f2n are linear holomorphic functions on Cn+1 defined by

γi,l =

(
ΛQl(νi)/κl (1 5 i 5 n)
ΛQl(ηi)/κl (n+ 1 5 i 5 2n).

Proof. Recall that ψ has a lattice Γ as periods if LT has a lattice Γ as periods by

Theorem 5.1. If LT has Γ as periods, then Γ is contained in V , since V is the set of all

points on which the value of LT is equal to the initial value LT (0) = (1, . . . , 1) ∈ Tn.
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Conversely, if V contains a lattice Γ, then clearly v1, . . . , vp are periods of LT , since

LT is a homomorphism from the additive group Ck to Tn. Hence Condition (??) is a
necessary and sufficient condition for LT to be periodic with periods v1, . . . , vp.

Now let us prove Theorem 3.13.

Proof of Theorem 3.13. From the argument in the proof of Theorem 3.11, we see

that the map given in Theorem 3.13 is a composition ψ ◦ F , where ψ is the map as in
(4.4) and F is a map defined by Cn+1 → Cn+1, (z1, . . . , zn+1) 7→ (κ1z1, . . . ,κn+1zn+1).

Thus Theorem 3.13 follows immediately from Proposition ??.

5.2. The case of spectral data of type Prn+1 with elliptic spectral curves.

Let us determine the map bL when (X, π, L) is a spectral data with a smooth elliptic
curve as its spectral curve. First, we compute the map L : Cn+1 → J(X) defined by

z = x+
√−1y 7→ L(z). Let Tz be a divisor defined by

Tz = (0)− (H(z, z̄)),(5.10)

where H is a point on X givne in Lemma 4.5. Let Θ be a meromorphic function on

C2 defined by

Θ(w, u) =
θ(0, u)

θ(w, u)
.

Then

exp

⎛⎝n+1X
j=1

zj
κj
[ζw(u− Pj)−Au]−

n+1X
j=1

³ z
κ

´
[ζw(u−Qj)−Au]

⎞⎠Θ(H(z, z̄), u)−1 ⊗ θA(z)

(5.11)

belongs to H0(X,OX(−Tz)⊗L(z)) by Lemma 2.10. Moreover we see that this is a non-
vanishing global holomorphic section of OX(Tz)⊗ L(z). In particular, the line bundle
L(z) ⊗ OX(Tz) is trivial, that is, L(z) ⊗ OX(Tz) ∼= OX , and hence L(z) ∼= OX(−Tz).
Using (5.10) and identifying Jacobian J(X) with X ∼= C/(Z ⊕ √−1tZ), we see that
L : Cn+1 → J(X) is given by

z = x+
√−1y 7→ H(z, z̄)− 0 = H(z, z̄) =

n+1X
j=1

(zj/κj − (zj/κj)) mod Z⊕ Z√−1t,

where κj is the complex number in Lemma 4.5.
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Using (5.11) and H0(X, L(z)⊗OX(Tz)) = H0(X, OX) ∼= C, we see that

θA(z) = C exp

⎛⎝− n+1X
j=1

zj
κj
[ζw(u− Pj)−Au] +

n+1X
j=1

³ z
κ

´
[ζw(u−Qj)−Au]

⎞⎠Θ1 (H(z, z̄), u) ,
where C is a non-zero constant.

Now we give an explicit description of bL : Cn+1 → J(Xo)R = J(Xn)R × J(Xm)R.
Let v : S1J = {e

√−1θ | θ ∈ R}→ J(X)R be a map defined by

e
√−1θ 7→ S(θ) =

√−1tθ/2π mod Z⊕ Z√−1t.
Let JnS → S1J and J

m
S → S1J be the pull-backs of J(Xn)R and J(Xm)R by v, respectively.

For 0 5 i 5 n, we defineAi : e
√−1θ ∈ S1J 7→ Ai(e

√−1θ) ∈ Hom
³
v(e

√−1θ)|νi , v(e
√−1θ)|ν0

´
,

sections of JnS → S1J , by the condition that each Ai(e
√−1θ) maps the element

exp(
√−1νiθ)Θ(

√−1tθ/(2π), νi)
of OX(−Tz)|νi to the element

exp(
√−1ν0θ)Θ(

√−1tθ/(2π), ν0)
of OX(−Tz)|ν0 . Replacing νi with ηi for 0 5 i 5 n, we get
Bi : e

√−1θ ∈ S1J 7→ Bi(e
√−1θ) ∈ Hom

³
v(e

√−1θ)|ηi , v(e
√−1θ)|η0

´
, sections of JmS →

S1J . Since the image of Cn+1 by L is contained in Z⊕Rτ mod Z⊕ Zτ (⊂ J(X)), we
can regard bL : Cn+1 → J(Xo)R as a map Cn+1 → JnS × JmS . Using this identification,
the map bL : Cn+1 → JS is given by

z = x+
√−1y 7→

³
(hi(z, z̄))15i5n, (gi(z, z̄))15i5n

´
,(5.12)

where gi(z, z̄) and hi(z, z̄) are elements of Hom (v(exp(2πH(z, z̄)/t))|νi , v(exp(2πH(z, z̄)/t))|ν0)
and Hom (v(exp(2πH(z, z̄)/t))|ηi , v(exp(2πH(z, z̄)/t))|η0) being defined by

gi(z, z̄) = exp(ai(z, z̄))Ai(exp(2πH(z, z̄)/t)) ,

hi(z, z̄) = exp(bi(z, z̄))Bi(exp(2πH(z, z̄)/t)) ,

respectively. Here ai is defined by

ai(z, z̄) = −
n+1X
j=1

zj
κj
[ζw(ν0 − Pj)− ζw(νi − Pj)− B

τ
(ν0 − νi)]

+
n+1X
j=1

(
zj
κj
)[ζw(ν0 −Qj)− ζw(νi −Qj)− B

τ
(ν0 − νi)]

and bi is defined by replacing νi with ηi in this equation.

Lemma 5.13. For 1 5 i 5 n, ai(z, z̄) and bi(z, z̄) are pure imaginary.
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Proof. We may assume that 0 5 ImP0, ImQ0, Im η0, . . . , Im ηn < Im τ . On this

assumption, Q0 = P0 + τ . Using ζw(u) = ζw(ū) and B̄ = −B, we then get

[ζw(η0 − Pj)− ζw(ηi − Pj)−Bτ−1 (η0 − ηi)]

= [ζw(η0 − Pj)− ζw(ηi − Pj)]−Bτ−1(η0 − ηi)(5.14)

= [ζw(η0 −Qj + τ)− ζw(ηi −Qj + τ)]−Bτ−1(η0 − ηi).

In the case that η0 ∈ S1A and ηi ∈ S1B , it follows from ζw(u+ τ) = ζw(u) +B that the

right hand side of (5.14) is equal to

[ζw(η0 −Qj + τ)− ζw(ηi − τ −Qj + τ)]−Bτ−1(η0 − ηi + τ)

= [ζw(η0 −Qj)− ζw(ηi −Qj)]− Bτ−1(η0 − ηi),

which implies see that bi is pure imaginary. Similarly, we can also see that bi is pure

imaginary in other cases.

Thus we can consider bL : Cn+1 → JnS × JmS to be a map LT : Cn+1 → T 2n+1 =

S1J × S1 × · · · × S1 defined by

z 7→ (exp(2πH(z, z̄)/t), exp(a1(z, z̄)), . . . , exp(an(z, z̄)), exp(b1(z, z̄)), . . . , exp(bn(z, z̄))) .

We can also consider pr : J(Xo)R → PUn+1 to be a map pr : JS → PUn+1. Then pr
is given as follows

³¡
αpAp(exp(

√−1θ))¢
p=1,... ,n

,
¡
βpBp(exp(

√−1θ))¢
p=1,... ,n

´
7→
·µ

βj
αi
Pi,j

¶¸
05i,j5n

,

(5.15)

where α0 = β0 = 1 and Pi,j is given by

Pi,j(z) =
μjeμi exp(

√−1(η0 − ηj)θ)

exp(
√−1(ν0 − νi)θ)

·
Qn
k=0 θ(Rk, νi)

Qj−1
k=0 θ(νk, ηj)θ(bνi + S(θ), ηj)Qn

k=j+1 θ(νk, ηj)Qn
k=0 θ(Rk, ηj)

Qj−1
k=0 θ(νk, νi)θ(bνi + S(θ), νi)Qn

k=j+1 θ(νk, νi).
(5.16)

Proposition 5.17. The composion pr ◦ L̂ : Cn+1 → PUn+1 is same as in (4.7).

Proof. Substituting exp(ai), exp(bi) and 2πH(z, z̄)/(
√−1t) into αi, βi and θ respec-

tively, we get the desired result.

Evidently, bL is doubly periodic if and only if LT is doubly periodic. Then we have the
following
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Proposition 5.18. The pluriharmonic map ψ : Cn+1 → PUn+1 defined by (4.7), corre-
sponding to a spectral data (X, π, L) is a lift of a map from Cn+1/Γ with a p-dimensinal
lattice Γ = ⊕pl=1Zvl ⊂ Cn+1 if the set V =

T
05i52n Vi contains Γ, where V0, . . . , V2n

are the sets defined by

Vi = {z ∈ Ck | fi(z) =
kX
l=1

γi,lzl ∈ π
¡
R⊕√−1Z¢}(5.19)

where f0, . . . f2n are linear holomorphic functions on Cn+1 defined by

γi,l =

⎧⎪⎨⎪⎩
([ζw(ν0 − Pl)− ζw(νi − Pl)−B (ν0 − νi)τ

−1])/κl (1 5 i 5 n)
([ζw(η0 − Pl)− ζw(ηi − Pl)−B (η0 − ηi)τ

−1])/κl (n+ 1 5 i 5 2n)
2π/(κlt) (i = 0).

Proof. Recall that ψ has a lattice Γ as periods if LT has a lattice Γ as periods by

Theorem 5.1. If LT has Γ as periods, then Γ is contained in V , since V is the set of

all points on which the value of LT is equal to the initial value LT (0) = (1, . . . , 1) ∈
T 2n+1.

Conversely, if V contains a lattice Γ, then clearly v1, . . . , vp are periods of LT ,

since LT is a homomorphism from the additive group Cn+1 to T 2n+1. Hence Condi-
tion (5.19) is a necessary and sufficient condition for LT to be doubly periodic with

periods v1, . . . , vp.

Now let us prove Theorem 3.18.

Proof of Theorem 3.18. From the argument in the proof of Theorem 3.16, we see

that the map given in Theorem 3.18 is a composition ψ ◦ F , where ψ is the map in

Proposition 5.17 and F is a map defined by Cn+1 → Cn+1, (zj)j 7→ (κjzj)j . Thus

Theorem 3.18 follows immediately from Proposition 5.18.

References

[1] F. E. Burstall, Harmonic tori in spheres and complex projective spaces, J. Reine Angew. Math.
469 (1995), 149-177.

[2] F. E. Burstall, D. Ferus, F. Pedit and U. Pinkall, Harmonic tori in symmetric spaces and
commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173-212.

[3] F. E. Burstall and J. C. Wood, The construction of harmonic maps into complex Grassman-
nians, J. Differential Geom. 23 (1986), 255-297.

[4] F. E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory, Harmonic maps
and Integrable Systems edited by A. P. Fordy and J. C. Wood, 221-272, Aspects of Mathematics
23, Vieweg, Braunshweigh/Wiesbaden, 1994.

[5] F. E. Burstall and F. E.Pedit, Dressing orbits of harmonic maps, Duke Math. J. 80 (1995),
353—382.

[6] C. Ciliberto and C. Pedrini, Real abelian varieties and real algebraic curves, Lectures in Real
Geometry edited by Fabrizio Broglia, 167-256, Walter de Gruyter, Berlin-New York, 1996.

[7] D. Ferus, F. Pedit, U. Pinkall and I. Sterling, Minimal tori in S4, J. Reine Angew. Math.
429 (1992), 1-47.



22 TETSUYA TANIGUCHI AND SEIICHI UDAGAWA

[8] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Math. Notes, Princeton Univ.
Press, New Jersey, 1967.

[9] M. A. Guest and Y. Ohnita, Actions of loop groups, deformations of harmonic maps, and
their applications, Selected Papers on Harmonic Analysis, Groups, and Invariants edited by K.
Nomizu, 33—50, American Mathematical Society Translations, Series 2, 183, Amer. Math. Soc.,
Providence, RI, 1998.

[10] B. Gross and J. Harris, Real Algebraic Curves, Ann. Sci. École Norm. Sup. Paris 14 (1981),
157-182.

[11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New York-
Heidelberg, 1977.

[12] N. J. Hitchin, Harmonic Maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990),
627-710.

[13] G. R. Jensen and R. Liao, Families of flat minimal tori in CPn, J. Differential Geom. 42 (1995),
113-132.

[14] O. Kowalski, Generalizecd Symmetric Spaces, Lecture Notes in Math. 805, Springer-Verlag,
Berlin-New York, 1980.

[15] K. Kenmotsu, On minimal immersions of R2 into Pn(C), J. Math. Soc. Japan 37 (1985), 665-
682.

[16] I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russ.
Math. Surv. 32 (1977), 185—213.

[17] I. McIntosh, A construction of all non-isotropic harmonic tori in complex projective space,
Internat. J. Math. 6 (1995), 831-879.

[18] I. McIntosh, Two remarks on the construction of harmonic tori in CPn, Internat. J. Math. 7
(1996), 515-520.

[19] I. McIntosh, Harmonic tori and generalised Jacobi varieties, math.DG/9906076, to appear in
Communications in Analysis and Geometry.

[20] I. McIntosh, Global solutions of the elliptic 2D periodic Toda lattice, Nonlinearity 7 (1996),
85-108.

[21] I. McIntosh, Infinite dimensional Lie groups and the two-dimensional Toda lattice, Harmonic
Maps and Integrable Systems edited by A. P. Fordy and J. C. Wood, 205-220, Aspects of Math-
ematics 23, Vieweg, Braunshweigh Wiesbaden, 1994.

[22] I. McIntosh, On the existence of superconformal 2-tori and doubly periodic affine Toda fields,
J. Geom. Phys. 24 (1998), 223—243.

[23] R. H. McKean and V. Moll, Elliptic curves, Cambridge University Press, Cambridge, 1997.
[24] R. Miyaoka, The family of isometric superconformal harmonic maps and the affine Toda equa-

tions, J. Reine Angew. Math. 481, (1996), 1-25.
[25] M. Namba, Branched Coverings and Algebraic Functions, Research Notes in Math. 161, Pitman-

Longman, New York, 1987.
[26] Y. Ohnita and S. Udagawa, Harmonic maps of finite type into generalized flag manifolds, and

twistor fibraitons, Differential geometry and integrable systems (Tokyo, 2000), 245-270, Contemp.
Math. 308, Amer. Math. Soc., Providence, RI, 2002.

[27] E. Previato, Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger
equation, Duke Math. J. 52 (1985), 329-377.

[28] J-P. Serre, Algebraic Groups and Class of Fields, Graduate Texts in Math. 117, Springer-Verlag,
New York-Berlin, 1988.

[29] S. R. Silhol, Real abelian varieties and the theory of Comesatti, Math. Z. 181 (1982), 345-364.
[30] T. Taniguchi, Non-isotropic harmonic tori in complex projective spaces and configurations of

points on Riemann surfaces, Tohoku Mathematical Publications 14, 1999
[31] S. Udagawa, Harmonic maps from a two-torus into a complex Grassmann manifold, Internat.

J. Math. 6 (1995), 447-459.
[32] E. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40

(1976), 488-526, Math. USSR Izv. 10 (1976), 463-495.
[33] J. G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann

manifolds, J. Differential Geom. 27 (1988), 161-178.
[34] J. C. Wood, The explicit construction and parametrization of all harmonic maps from the two-

sphere to a complex Grassmannians, J. Reine Angew. Math. 386 (1988), 1-31.



PLURIHARMONIC MAPS FROM TORI INTO PROJECTIVE UNITARY GROUPS 23

Tetsuya TANIGUCHI : Kitasato University, School of General Education, Department
of Mathematics, Sagamihara, Kanagawa, 228-8555
E-mail address: tetsu@math.tohoku.ac.jp

Seiichi UDAGAWA : Nihon University, School of Medicine, Department of Mathematics,
Itabashi, Tokyo, 173-0032
E-mail address: sudagawa@med.nihon-u.ac.jp


