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§1 Introduction
I. McIntosh [Mc1] gave a 1-1 correspondence between the spectral data {π : X →

P1,L} which satisfies the certain conditions and the linearly full non-isotropic harmonic
maps of finite type R2 → CPn. If ϕ : R2 → CPn is a harmonic map of isotropy order r

(1 � r <∞) then there is a certain harmonic map ψ : R2 → F r(CPn) into a flag manifold

such that ϕ = p ◦ ψ, where p : F r(CPn) −→ CPn is the homogeneous projection.

Fact (1) r = 1 if and only if ϕ is non-conformal. In this case, we have F 1(CPn) = CPn.

(2) r =∞ if and only if ϕ is isotropic.

Now, we represent F r(CPn) = G/K as a homogeneous space and denote by G and
K the Lie algebras of G and K, respectively. Then we have the canonical decomposition

G = K +M. It is known that F r(CPn) have the structure of (r + 1)-symmetric space in

the sense of O. Kowalski[K]. Let τ be the automorphism of order (r + 1) with fixed set

K on G/K which gives the (r + 1)-symmetric space structure on G/K. Let Gi be the ωi-
eigenspace of τ , where ω = exp(2π

√−1/(r + 1)). Then we have⎧⎪⎨⎪⎩ GC =
rX
i=0

Gi, KC = G0, MC =

rX
i=1

Gi,

G−i = Gi, [Gi,Gj ] ⊂ Gi+j , (index is regarded as mod k)

The map G −→ Tx(G/K) given by ξ 7→ d
dt
|t=0 exp tξ · x restricts to an isomorphism

Adg ·M −→ Tx(G/K). We denote the inverse map by β : Tx(G/K) −→ Adg ·M ⊂ G and
we may regard β as a G-valued 1-form on G/K, which is called Maurer-Cartan form for

G/K. Denote by [Gi] the vector bundle over G/K of which the fibre at x = g · o ∈ G/K
is given by Adg · Gi.

Definition. ψ is said to be primitive if (ψ∗β)( ∂
∂z
) is [G1]- valued, where β is the

Maurer-Cartan form for G/K.

Take a lift F : R2 → G of ψ with ψ = π̃ ◦ F , where π̃ : G → G/K the natural

projection. Then we see that ψ∗β = AdF ·αM, where α = F−1dF and α = αK + αM is a



Seiichi UDAGAWA

decomposition of α with respect to the canonical decomposition G = K +M. Therefore,

we see that ψ is primitive if and only if αM( ∂∂z ) is G1-valued.
Remark. Black[B] proved that if r ≥ 2 then a primitive map ψ is a harmonic map with

respect to any invariant metric on G/K. In case of r = 1, the condition of the primitivity is

always satisfied and meaningless. Hence, we suppose that ψ = ϕ is a harmonic map when

r = 1. When we treat both cases in a unified way, we call such ψ a primitive harmonic

map. We denote by αM = α0M + α00M the type decomposition of αM according to the

decomposition of the complexified cotangent bundle of the domain manifold. Note that

α00M(∂/∂z) = −
¡
α0M(∂/∂z)

¢∗
.

Example 1.1. Define α0M(∂/∂z) and α
0
K(∂/∂z) with K = U(1)× U(1)× U(1) by

α0M(∂/∂z) =

⎛⎝ 0 0 1

1 0 0

0 1 0

⎞⎠ , α0K(∂/∂z) = 0.

Set F = exp(zα0M(∂/∂z)) · exp(zα00M(∂/∂z)). Then ψ = π̃ ◦ F : R2 −→ F 2(CP 2) =

SU(3)/T 2 is a primitive harmonic map into a full flag manifold and ϕ = p◦ψ : R2 −→ CP 2

is a harmonic map of isotropy order 2. The ψ is a primitive map corresponding to the

vacuum solution(cf. [BP]). Note that ϕ is indeed doubly-periodic.

§2 Spectral curves
Let X and Y be compact Riemann surfaces of genus g and genus g0, respectively. Let

π : X −→ Y be a holomorphic covering map. Denote by R the ramification divisor of π.

Then we have a Riemann-Hurwitz formula :

2g − 2 = deg(π) · (2g0 − 2) + deg(R).

Now, take Y = CP 1, hence g0 = 0. Consider π : X −→ CP 1 defined by ζ 7→ π(ζ) =

ζn+1 = λ. Then the degree of π is (n+1) and the branch points of π are ζ = 0 and ζ =∞
with ramification indices n+ 1. In this case, the ramification divisor R is

R = n(0) + n(∞),

hence deg(R) = 2n. Therefore, the Riemann-Hurwitz formula tells us that the genus of X

is zero, i.e., a Riemann sphere CP 1.

The interpretation of the primitive harmonic map equation for ψ : M −→ G/K by

the pullback of the Maurer-Cartan form is as follows :(
dα0M + [α00K ∧ α0M] = 0, α0M is G1 − valued,
dα0K + [α

0
K ∧ α00K] + [α0M ∧ α00M] = 0.

(2.1)
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In the following examples, we will show how one obtains a spectral curveX from a primitive

harmonic map of finite type.

Example 2.1. Define α0M(∂/∂z) and α
0
K(∂/∂z) with K = U(1)× U(1)× U(1) by

α0M(∂/∂z) =

⎛⎝ 0 0 1

1 0 0

0 1 0

⎞⎠ , α0K(∂/∂z) = 0.

Then, as in Example 1.1, we have a harmonic map ϕ : R2 −→ CP 2 with framing F =

exp(zα0M(∂/∂z)) · exp(zα00M(∂/∂z)). Set α0η = ηα0M + α0K = ηα0M and define αη by

αη = α0η − (α0η)∗. Moreover, define Fη and ξ by

Fη = exp(zα
0
η(∂/∂z)− z

¡
α0η(∂/∂z)

¢∗
), ξ = AdF−1η · αη.

Then we see that the following equation holds :

dξ = [ξ, F−1η dFη].

In this situation, ξ is called a polynomial Killing field and hence ψ : R2 −→ F 2(CP 2) is

a primitive harmonic map of finite type. Note that any harmonic map ϕ with isotropy

order r of 2-torus into CPn is obtained as ϕ = p ◦ ψ for some primitive harmonic map
ψ of finite type into F r(CPn). Now, the spectral curve X is defined by the equation

det(α0η − ζI) = 0. Setting λ = η3, a simple calculation shows that λ = ζ3. Then, the

Riemann-Hurwitz formula yields that X = CP 1 a rational curve.

Example 2.2. Define α0M(∂/∂z) and α
0
K(∂/∂z) with K = U(1)× U(1)× U(2) by

α0M(∂/∂z) =

⎛⎜⎜⎝
0 0 b −a
1 0 0 0

0 1 0 0

0 0 0 0

⎞⎟⎟⎠ , α0K(∂/∂z) =

⎛⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 0

0 0 a b

⎞⎟⎟⎠ ,
where | a |2 + | b |2= 1 and 0 <| b |< 1. Set α0 = α0M + α0K and F = exp(zα0(∂/∂z) ·
exp(−z¡α0(∂/∂z)¢∗). Then ψ = π̃ ◦ F : R2 −→ F 2(CP 3) = U(4)/U(1) × U(1) × U(2) is
a primitive harmonic map and ϕ = p ◦ ψ : R2 −→ CP 3 is a weakly conformal harmonic

map of isotropy order 2. Set α0η = α0K + ηα0M and αη = α0η −
¡
α0η
¢∗
. As in Example 2.1,

we see that ψ is of finite type. The equation det(α0η(∂/∂z)− ζI) = 0 with λ = η3 yields

λ =
1

b

ζ3(ζ − b)
(ζ − b−1) .

The branch points are ζ = 0, ζ =∞ with ramification index 3 and the others are ζ = α±,
where

α± =
| b |2 +2±

p
| b |4 −5 | b |2 +4
3b

.
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Therefore, the ramification divisor R is given by

R = 2(0) + (α+) + (α−) + 2(∞).

Hence, deg(R) = 6 and the Riemann-Hurwitz formula yields that the genus of the spectral

curve X is zero because the degree of π is four. Moreover, the real structure ρX of X is

defined by ρX(ζ,λ) = (ζ
−1
,λ
−1
), which induces a real structure ρ : λ 7→ λ

−1
on CP 1.

Notice that the preimage of the equator S1 of CP 1 is ρX -fixed and there is no branch

points on the preimage of the equator.

Remark. T.Taniguchi[T1] determined all the smooth spectral curves of genus zero.

Example 2.3. Define α0η by

α0η = η

µ
0 −√−1√−1 0

¶
+ η2

µp−1/2 0

0 −
p
−1/2

¶
+ η3

µ
0

√−1
−√−1 0

¶
,

where K = U(1) × U(1). Set αη = α0η −
¡
α0η
¢∗
. Then, we have a decomposition

exp(zη−2αη) = Fη · Gη, where Fη : R2 −→ ΛGτ , Gη : R
2 −→ ΛGCτ ( see [BP]). If we

set ξ = AdF−1η · αη then we have dξ = [ξ, F−1η dFη], hence ξ is a polynomial Killing field

and ϕ = ψ = π̃ ◦ Fη |η=1: R2 −→ CP 1 is a harmonic map of finite type. Now, let me cal-

culate the spectral curve. The equation det(α0η−ζI) = 0 yields that ζ2 = λ(λ−2)(λ−1/2)
with λ = η2. Thus, the spectral curve X is an elliptic curve, i.e., of genus one. In fact, the

ramification divisor R of π is given by

R = (λ = 0) + (λ = 2) + (λ =
1

2
) + (λ =∞),

hence deg(R) = 4 and the Riemann-Hurwitz formula yields that the genus of X is one be-

cause the degree of π is two. The real structure ρX ofX is given by ρX(ζ,λ) = (ζ̄λ
−2
,λ
−1
).

Notice that the preimage of the equator of CP 1 is ρX -fixed and there is no branch points

on the preimage of the equator.

In general, if one finds a polynomial Killing field for the primitive harmonic map of

finite type then one can define the spectral curve from the characteristic polynomial of it(see

[H]). However, it is not so easy to deduce a spectral data from given primitive harmonic map

of finite type. This is the reason why the section 7 of McIntosh’s paper[Mc1] is lengthy.

§3 Spectral data
First of all, we give a definition of the spectral data :

Definition A triple (X,π,L) is said to be a spectral data if they satisfy the following
conditions :

(1) X is a complete connected algebraic curve of arithmetic genus p with real structure
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ρX , i.e., anti-holomorphic involution,

(2) there is a holomorphic covering map π : X −→ CP 1 with deg(π) = n + 1 such that

π ◦ ρX = π−1(=a real structure of CP 1) and the divisor of π is given by

(π) = (m+ 1)P0 + P1 + · · ·+ Pn−m − (m+ 1)Q0 −Q1 − · · ·−Qn−m,

where Qj = ρX(Pj) for j = 0, 1, · · · , n−m,
(3) L is a (complex) line bundle over X of degree (n+ p) such that

f : L⊗ ρX∗L −→ OX(R)

is a ρX -equivariant(ρX∗f = f) isomorphism, where R is the ramification divisor of π and
OX(R) is the line bundle corresponding to R,
(4) ρX fixes each point of the preimage XR of the equator S1λ of CP

1
λ , π has no branch

points on XR and f is non-negative on XR.

Given a spectral data (X,π,L), we see from the Riemann-Hurwitz formula that

deg(R) = 2n + 2p. Then, the condition (4) above guarantees that there is some positive

divisor D on X with deg(D) = n+p such that R = D+ρX∗(D). If we identify L with a di-
visor line bundle OX(D0) for some divisor D0 on X, the condition (3) above implies that f
is a rational function on X with a divisor (f) given by (f) = (D0+ρX∗(D0)−D−ρX∗(D)).

Now, let me introduce a Hermitian inner product on H0(X,L), which is the vector
space of all global holomorphic sections of L. Denote by π∗L the direct image sheaf of
L by π, i.e., Γ(U,π∗L) = Γ(π−1(U),L) for any open subset U of CP 1λ . Then it follows

from Grothendieck’s Riemann-Roch theorem that H0(X,L) = H0(CP 1λ ,π∗L). Set A =

CP 1λ \ {0,∞} and I = I0 ∪ I∞, where I0 (resp. I∞) is an open neighborhood around 0
(resp. around ∞) which contains no branch points except 0 (resp. except ∞). Hence,
CP 1λ = A ∪ I. Next, set XA = π−1(A) and XI = π−1(I) so that X = XA ∪XI .

Definition. Define a bilinear form h on Γ(XA,L)× Γ(XA,L) by

h : Γ(XA,L)× Γ(XA,L) 3 (v, w) 7→ Tr(f · v ⊗ ρX∗w) ∈ C[λ−1,λ],

where C[λ−1,λ] is the ring generated by λ,λ−1 over the field C. Notice that f · v ⊗ ρX∗w
is a holomorphic section of OX(R) over XA, whence its trace is a holomorphic function on
A. Take a point P of CP 1λ . Then, we have

h(v, w)(P ) =
X

x∈π−1(P )
f(x) · v(x)w(ρX(x)).

The summation is taken over all points {x0, · · · , xn} = π−1(P ) and it is counted with
multiplicities if P is a (or an image of) branch point. The obvious properties of h is as

—5—



Seiichi UDAGAWA

follows : For any holomorphic function b on A we have

(1) h(bv, w) = bh(v, w), (2) h(v, bw) = ρCP 1
λ
∗bh(v, w), (3) h(w, v) = ρCP 1

λ
∗h(v, w).

Now, we may regardH0(X,L) as a subset of Γ(XA,L). Since a global holomorphic function
on CP 1λ is a constant and f is ρX - equivariant, i.e., ρX∗f = f , we have ρCP 1

λ
∗b = b and

ρCP 1
λ
∗h(v, w) = h(v, w), hence we see that h |H0×H0 defines a Hermitian symmetric form.

The positive definiteness of h |H0×H0 depends on the choice of f . Since h |H0×H0 is a

constant, it is enough to evaluate it at some point of CP 1. In particular, evaluating it at

the equator S1λ we see from the non-negativity of f on XR(condition (4) of the spectral

data) that h |H0×H0 is positive definite, hence it defines a Hermitian inner product.

Now, let {η0, · · · , ηn} be the inverse image of 1 ∈ S1λ. They are (n + 1)-distinct ρX -
fixed points due to the condition (4) of the spectral data. Take a local frame S0, · · · , Sn
such that Si(ηj) = 0 for i 6= j and f(ηi) · Si(ηi) ⊗ ρX∗(Si(ηi)) = 1 for i = 0, · · · , n. If we
represent v, w around π−1(1) as

v =

nX
i=0

viSi, w =

nX
i=0

wiSi,

then we have

h(v, w) =
X

x∈π−1(1)
f(x) · v(x)⊗ w(ρX(x))

=

nX
j=0

f(ηj) ·
¡ nX
i=0

viSi(ηj)
¢ nX
k=0

wkSk(ρX(ηj))

=

nX
j=0

vjwj .

We state a lemma on the triviality of π∗L, of which the proof we omit since it takes
us to a rather lengthy trip :

Lemma 3.1. π∗L is a rank (n+ 1) trivial bundle over CP 1λ .
Since h0(X,L) = dimH0(X,L) = dimH0(CP 1λ ,π∗L) = n + 1, it follows from the

Riemann-Roch formula

h0(X,L)− h1(X,L) = 1− p+ deg(L) = n+ 1

that h1(X,L) = 0, in which case L is called non-special.
We give some examples of the spectral data.

Example 3.1. Consider π(ζ) = ζ4 = λ. Then, X = CP 1ζ and π : CP
1
ζ −→ CP 1λ is a

degree 4 holomorphic covering map. The divisor of π is

(π) = 4(0)− 4(∞).
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The ramification divisor R of π is given by

R = 3(0) + 3(∞).

The real structure ρX is given by ρX(ζ,λ) = (ζ
−1
,λ
−1
), which induces a real structure

ρCP 1
λ
on CP 1λ . Now, take a line bundle L as L = OX(3(0)). Then, we have deg(L) = 3

and obviously L ⊗ ρX∗L = OX(R), whence we take f = 1. Then, the conditons (3)

and (4) of the spectral data are satisfied. The vector space H0(X,L) is generated by
{1, ζ−1, ζ−2, ζ−3} over XA and h0(X,L) = 4. Of course, if we denote by {x0, x1} the
homogeneous coordinate for C2 then

H0(X,L) = Span{x30, x20x1, x0x21, x31}.

If x0 6= 0 then, setting ζ = x0/x1, we have the generating basis above. If we retake f = 1/4
then the generating basis above are orthonormal basis with respect to h |H0×H0 .

Example 3.2. Consider π(ζ) = 1
α
ζ3

(ζ−α)
(ζ−α−1) = λ, where 0 < α < 1(cf. Example

2.2). Then, as in Example 2.2, we see that X = CP 1ζ and π : X −→ CP 1λ is a degree 4

holomorphic covering map. The real structure ρX is given by ρX(ζ,λ) = (ζ
−1
,λ
−1
). The

divisor of π is

(π) = 3(0) + (α)− (α−1)− 3(∞).
The ramification divisor R of π is given by

R = 2(0) + (p) + (p−1) + 2(∞),

where

p =
α2 + 2−√α4 − 5α2 + 4

3α
.

Therefore, there is no branch points on XR. Now, take a line bundle L as L = OX(3(∞))
and take f as

f(ζ) =
−ζ

(ζ − p)(ζ − p−1) .

Then f : L ⊗ ρX∗L −→ OX(R) is a ρX -equivariant isomorphism. We see that (f) =

(0) + (∞)− (p) − (p−1) and f is non-negative on XR. Let {ζ1, ζ2, ζ3, ζ4} be the elements
of π−1(1). Then, we easily see that ζi = ζi

−1
for i = 1, · · · , 4. More generally, each point

of XR is ρX -fixed. In fact, solve the equation ζ
4 − αζ3 − αe

√−1θζ + e
√−1θ = 0. Notice

that this equation is invariant under the tansformation ζ 7→ ζ
−1
. We define a local frame

S1, S2, S3, S4 over XA as follows :

S1 =
p
f(ζ1)

(ζ − ζ2)(ζ − ζ3)(ζ − ζ4)

(ζ1 − ζ2)(ζ1 − ζ3)(ζ1 − ζ4)
, S2 =

p
f(ζ2)

(ζ − ζ1)(ζ − ζ3)(ζ − ζ4)
(ζ2 − ζ1)(ζ2 − ζ3)(ζ2 − ζ4)

,

S3 =
p
f(ζ3)

(ζ − ζ1)(ζ − ζ2)(ζ − ζ4)

(ζ3 − ζ1)(ζ3 − ζ2)(ζ3 − ζ4)
, S4 =

p
f(ζ4)

(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)
(ζ4 − ζ1)(ζ4 − ζ2)(ζ4 − ζ3)

.
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These satisfy Si(ζj) = 0 for i 6= j and f(ζi)Si(ζi)ρX∗Si(ζi) = 1 for i = 1, · · · , 4.

§4 A parallel transport

To construct a map from R2 and to define a conncetion for a line bundle over R2, we

need to define a parallel transport of a section of L to a section of a line bundle overR2. Let

J(X) be the Jacobian variety of the spectral curve X, i.e., J(X) = H1(X,O)/H1(X,Z),

which is a p-dimensional complex torus, where p is the genus of X, and defined by the long

exact sequence coming from the short exact sequence

0 −→ Z −→ O exp−→O∗ −→ 0.

The set of all line bundles L ∈ J(X) which satisfy ρX∗L ∼= L−1 forms a subgroup of J(X)
by a tensor product. We denote by JR(X) the connected component of the identity of this

subgroup(the identity is trivial line bundle). Then, JR(X) is a p-dimensional real torus.

For any L ∈ JR(X), we see that a line bundle L⊗L satisfies (L⊗L)⊗ρX∗(L⊗ L) ∼= OX(R).
In this case, we say that L⊗L is real. Note that when we replace L by L⊗L for L ∈ JR(X)
we see that f is still non-negative on the preimage XR of the equator S1λ. In fact, f is

independent of L. Since deg(L ⊗ L) = deg(L) = n + p, it follows from Lemma 3.1 that

π∗(L ⊗ L) is a rank (n + 1) trivial bundle and h0(X,L ⊗ L) = n + 1. Now, consider a

complex vector bundle H0(X) 7→ JR(X) of which the fibre at L ∈ JR(X) is given by a
(n + 1)-dimensional complex vector space H0(X,L ⊗ L). Recall that X = XA ∪ XI . A
line bundle L ∈ J(X) is trivialized over XA or XI . We denote by θA and θI trivializing
sections over XA and XI , respectively, i.e.,

L |XA

θA∼= XA ×C, L |XI

θI∼=XI ×C.

Over XA ∩XI , we have a transition relation θI = eaθA. Thus, for L ∈ JR(X), we have a
1-cocycle (ea,XA, XI). Conversely, a 1-cocycle (e

a, XA,XI) defines a line bundle L with

ea as a transition function. Then, consider a map L : G = Γ(XA ∩ XI ,OX) −→ J(X)

defined by a 7→ L(a), where L(a) is a line bundle with a transition function ea. Set

GR = {a ∈ G | ρX∗a = −a}.

Then, we see that Im(L |GR) = JR(X). Now, fix a trivializing section θ for L over XI such
that Tr(f · θ ⊗ ρX∗θ) = 1. For a ∈ GR, set θa = θ ⊗ θI , which is a trivializing section for

L⊗ L(a) over XI . We want to define a map

ιa : Γ(XA,L⊗ L(a)) −→ Γ(XA,L).
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Lemma 4.1. For σa ∈ Γ(XA,L⊗ L(a)), define ιa(σa) by

ιa(σa) = e
a(σaθ

−1
a )θ.

Then, we have ιa(σa) ∈ Γ(XA,L).
Proof. Let τ be a trivializing section of L over XA. We may write θ = ecτ . Therefore,

we have θa = e
a+cτ ⊗ θA. Now, we calculate

ιa(σa) = e
a(σaθ

−1
a )θ(4.1)

= e−cσa(τ ⊗ θA)−1θ = σa(τ ⊗ θA)
−1τ,

where σa(τ ⊗ θa)−1 is a holomorphic function over XA and τ is a trivializing section of L
over XA, thus we have ιa(σa) ∈ Γ(XA,L). q.e.d.

Indeed, ιa : Γ(XA,L ⊗ L(a)) −→ Γ(XA,L) is an isomorphism. The injectivity of ιa
is obvious. To show the surjectivity of ιa, take an arbitrary σ ∈ Γ(XA,L). Then, we
may write σ = bτ for some b ∈ Γ(XA,O). We choose σa = b(τ ⊗ θA). Then we have

ιa(σa) = bτ = σ by (4.1), proving the surjectivity of ιa. Let L
∗H0(X) 7→ GR be the

pullback bundle of the bundle H0(X) 7→ JR(X) by L : GR −→ JR(X). Let {τ0, · · · , τn} be
an orthonormal frame of global sections of L. We have Γ(XA,L) = Span{τ0, · · · , τn} |XA

,

because Γ(XA,L) is a free O-module of rank (n+1) by the facts that Γ(XA,L) = Γ(A,π∗L)
and π∗L is a trivial bundle of rank (n + 1). Any element of Γ(XA,L) is expressed asP

σj(λ)τj . Define an evaluation map ev1 : Γ(XA,L) −→ H0(X,L) by Pσj(λ)τj 7→P
σj(1)τj , where σj(1) is the value of σj(λ) at λ = 1 and a constant. Now, the composition

ev1 ◦ ιa |H0(X,L⊗L(a)): H0(X,L ⊗ L(a)) −→ H0(X,L) is an isomorphism. Indeed, it is
clearly surjective by the way of construction of the map and it is injective by the fact that

h0(X,L⊗ L(a)) = h0(X,L) = n+ 1.
Lemma 4.2. Let σ1,σ2 ∈ H0(X,L⊗L(a)) and set sj = ιa(σj) for j = 1, 2. Then h(s1, s2)

is a constant.

Proof. For simplicity, set L(a) = L ⊗ L(a). The map ιa : Γ(XA,L(a)) −→ Γ(XA,L)
induces an isomorphism �a : Γ(XA,L(a) ⊗ ρX∗L(a)) −→ Γ(XA,L ⊗ ρX∗L). In fact,

�a(σ) = σ(θa ⊗ ρX∗θa)−1θ ⊗ ρX∗θ because the transition function ea for L(a) and the
transition function e−a for ρX∗L(a) cancel out each other. Set s12 = �a(σ1 ⊗ ρX∗σ2),
which is a section of Γ(XA,L⊗ρX∗L). We claim that s12 is a globally defined holomorphic
section of L⊗ ρX∗L. First of all, s12 is holomorphic over XA. Next, to show that it is also
holomorphic over XI , set fj = σjθ

−1
a for j = 1, 2, which is a holomorphic function on XI .

Now, we have

s12 = σ1 ⊗ ρX∗σ2(θa ⊗ ρX∗θa)−1θ ⊗ ρX∗θ
= f1θ ⊗ ρX∗(f2θ).
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Therefore, we see that s12 is also holomorphic over XI since θ is a holomorphic frame field

over XI . Thus, s12 is a globally holomorphic section, proving the claim. Then we have

h(s1, s2) = h(ιa(σ1), ιa(σ2))

= Tr(f · ιa(σ1)⊗ ρX∗ιa(σ2))
= Tr(f · �a(σ1 ⊗ ρX∗σ2)) = Tr(f · s12).

Since Tr(f ·s12) ∈ H0(CP 1λ ,O) (notice that f ·s12 ∈ H0(X,OX(R))), we see that h(s1, s2)
is a constant. q.e.d.

§5 The construction of harmonic maps into CPn
Consider a map a : R2 −→ GR defined by z 7→ a(z, z) = zζ−1 − zζ, where ζ is

considered only on XA ∩ (U0 ∪U∞), where U0 (resp. U∞) is a connected component of X0
(resp. X∞) which contains P0 (resp. Q0). Then L(a) = L(zζ−1 − zζ) is a 2-parameter
subgroup of JR(X). We have a diagram

L(a)∗H0(X) −→ L∗H0(X) −→ H0(X) ⊃ H0(X,L⊗ L)⏐⏐y ⏐⏐y ⏐⏐y
R2 a−→ GR L−→ JR(X) 3 L

We also rewrite L(a)∗H0(X) as H0(X) if there is no confusion. Fix h-orthonormal basis

{τj} for H0(X,L) such that (H0(X,L), h) −→ (Cn+1, < , >) is isometric. We want to

decompose the vector bundle H0(X) 7→ R2 into line subbundles which are orthogonal to

each other. For the purpose, first define the following line bundles for which the sheaves of

germs of holomorphic sections are subsheaves of the sheaf of germs of holomorphic sections

for L :⎧⎪⎪⎨⎪⎪⎩
Lj = L⊗OX(−(m− j)P0 − jQ0 −

n−mX
i=1

Pi) for j = 0, 1, · · · ,m− 1,

Lm = L⊗OX(−mQ0).
(5.1)

Lemma 5.1. For j = 0, 1, · · · ,m, each Lj is non-special, i.e., h1(X,Lj) = 0.
Proof. Set Ij = L ⊗ OX(jP0 − jQ0) for j = 0, 1, · · · ,m. Then, this is a real line

bundle, i.e., it satisfies Ij ⊗ ρX∗Ij ∼= OX(R). It follows from Lemma 3.1 that π∗Ij is a
rank (n + 1) trivial bundle. Define Fj by Fj = Ij ⊗OX(−(m+ 1)P0 −

Pn−m
i=1 Pi). Then

we obtain

Fj =

⎧⎪⎪⎨⎪⎪⎩
Lj(−P0) for j = 0, · · · ,m− 1,

Lm(−P0 −
n−mX
i=1

Pi) for j = m.
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Note that deg(Fj) = p− 1 for j = 0, 1, · · · ,m. In general, we know that H0(X,L(−P )) ∼=
{s ∈ H0(X,L) | s(P ) = 0}, where L(D) = L ⊗ OX(D) for a divisor D on X. In

fact, if we fix a meromorphic section τ with the divisor (τ) = (−P ) then tensoring each
element by τ or τ−1 gives an isomorphism. Now, suppose that Fj has a non-trivial global
section. Then there is a global section of π∗Ij which vanishes at λ = 0 because any global
holomorphic section of Fj is a global holomorphic section of Ij with divisor (m+ 1)P0 +P
Pi. However, since π∗Ij is a trivial bundle, it must be identically zero. Thus, we see

that h0(X,Fj) = 0. Now, the Riemann-Roch formula implies that h1(X,Fj) = 0 because
deg(Fj) = p − 1 for j = 0, 1, · · · ,m. In general, for any line bundle L and any point

P ∈ X, h1(X,L) = 0 implies that h1(X,L(P )) = 0. Indeed, it follows from the Serre

duality theorem that 0 = h1(X,L) = h0(X,Ω
1,0
X ⊗ L−1), where Ω1,0X is the holomorphic

cotangent bundle (=canonical bundle) of X. Again, from the Serre duality it follows that

h1(X,L(P )) = h0(X,Ω
1,0
X ⊗ L−1(−P )). Therefore, if there is a non-trivial element of

H1(X,L(P )) then there is a global section of Ω
1,0
X ⊗L−1 which vanishes at P . However, it

must be identically zero because h0(X,Ω
1,0
X ⊗ L−1) = 0. For the completion of the proof,

notice that Lj = Fj(P0) for j = 0, 1, · · · ,m − 1 and Lm = Fm(P0 +
P
Pi). Apply the

general theory above to these line bundles once or successively. q.e.d.

Corollary 5.1. For arbitrary a ∈ GR, we have h1(X,Lj ⊗ L(a)) = 0 for j = 0, 1, · · · ,m.
Proof. Just replace L by L ⊗ L(a) in the definition of Ij in the proof of Lemma 5.1.

q.e.d.

Corollary 5.1, together with the Riemann-Roch theorem, yields that

h0(X,Lj ⊗ L(a)) =
(

1 for j = 0, 1, · · · ,m− 1,
n+ 1−m for j = m.

Then, we obviously obtain

H0(X,L⊗ L(a)) =
mM
j=0

H0(X,Lj ⊗ L(a)) (direct sum).

Define a map τ1 : Γ(XA,L) −→ Cn+1 by the composition of the identification H0(X,L)
with Cn+1 by {τj} and the map ev1. We draw a diagram of our present situation :

Γ(XA,L) ev1−→H0(X,L) {τj}−→Cn+1

ιa

x⏐⏐
Γ(XA,L⊗ L(a)) ⊃ H0(X,L⊗ L(a)) =

mM
j=0

H0(X,Lj ⊗ L(a))
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Define a line subbundle lj of the trivial bundle R
2 ×Cn+1 by

lj = τ1 ◦ ιa(H0(X,Lj ⊗ L(a)) for j = 0, 1, · · · ,m.
Then we claim that R2×Cn+1 =Lm

j=0 lj , which is an orthogonal direct sum with respect

to the inner product < , > on Cn+1. To show the claim, it is enough to prove the following

lemma :

Lemma 5.2. For j = 0, 1, · · · ,m, let σj ∈ H0(X,Lj ⊗ L(a)) with z, z fixed. Set sj =
ιa(σj). Then h(sj , sk) = 0 for j 6= k.

Proof. From Lemma 4.2 we know that h(sj , sk) is a constant. Therefore, it is enough

to show that when j 6= k, h(sj , sk) is zero at some point of CP 1λ . If we set fj = σjθ
−1
a then

we see that fj is a holomorphic function over XI and sj = e
a(σjθ

−1
a )θ = eafjθ. Since σj

is a global holomorphic section of L ⊗ L(a) which has a divisor (m − j)P0 + jQ0 +
P
Pi

for j = 0, · · · ,m− 1 or a divisor mQ0 for j = m, it follows that fj has a divisor(
(m−j)P0 + jQ0 +

X
Pi for j = 0, 1, · · · ,m− 1,

mQ0 for j = m.

Set rjk = f · θ ⊗ ρX∗θfjρX∗fk. Then we have h(sj , sk) = Tr(rjk). Recall that XI =

X0 ∪X∞. We denoted by U0 (resp. U∞) a connected component of X0 (resp.X∞) which
contains P0 (resp. Q0). Remember that there is no branch points on X0 and X∞ except

P0 and Q0. It follows from the fact that f · θ ⊗ ρX∗θ is a meromorphic function with a
divisor (−R) that

f · θ ⊗ ρX∗θ =

⎧⎪⎪⎨⎪⎪⎩
ζ−m in U0,

ζm in U∞,

1 elsewhere in XI .

Therefore, rjk has a divisor⎧⎨⎩ (k − j)P0 + (j − k)Q0 +
X

Pi +
X

Qi for j, k = 0, 1, · · · ,m− 1,

(m− j)P0 + (j −m)Q0 +
X

Pi for k = m; j = 0, 1, · · · ,m− 1.
(5.2)

Note that π−1(0) = {(m+1)P0, P1, · · · , Pn−m} and π−1(∞) = {(m+1)Q0, Q1, · · · , Qn−m},
where (m + 1)P0 (resp. (m + 1)Q0) is a point P0 (resp. Q0) with multiplicity (m + 1).

This, together with (5.2), yields that if j, k < m

Tr(rjk) =
X

π−1(0)

rjk = 0 when k > j,

Tr(rjk) =
X

π−1(∞)
rjk = 0 when j > k,
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if j < k = m

Tr(rjm) =
X

π−1(0)

rjm = 0,

proving our assertion. q.e.d.

Lemma 5.3. Let σ : R2 −→ H0(X) be a smooth section for which σ(z, z) is a globally

holomorphic section of F ⊗ L(a) for some ideal sheaf F of L. Let D be the covariant

derivation on H0(X) induced by the parallel transport. Then, D∂/∂zσ (resp. D∂/∂zσ) is

a globally defined holomorphic section of F(P0)⊗ L(a) (resp. F(Q0)⊗ L(a)).
Remark. Each Lj is an ideal sheaf of L.
Proof. We can define a connection D on the bundle H0(X) by

DZσ = ι−1a (Zιa(σ)),

where σ is a section of the bundle H0(X) 7→ R2 and Z is an arbitrary vector field on R2.

If we set s = ιa(σ) and f = σθ−1a then we see that s = eafθ : R2 −→ Γ(XA,F) and
f : R2 −→ Γ(XI ,F ⊗ L−1). Recall that a = zζ−1 − zζ. We obtain⎧⎪⎨⎪⎩

∂s

∂z
= ζ−1eafθ +

∂f

∂z
eaθ = (ζ−1f +

∂f

∂z
)eaθ ∈ Γ(XA,F(P0)),

∂s

∂z
= −ζeafθ + ∂f

∂z
eaθ = (−ζf + ∂f

∂z
)eaθ ∈ Γ(XA,F(Q0)).

Thus, from the definition of D it follows that⎧⎪⎨⎪⎩
D∂/∂zσ = (ζ

−1f +
∂f

∂z
)θa ∈ Γ(XI ,F(P0)⊗ L(a)),

D∂/∂zσ = (−ζf +
∂f

∂z
)θa ∈ Γ(XI ,F(Q0)⊗ L(a)).

Since ∂s/∂z is holomorphic over XA, D∂/∂zσ is also holomorphic over XA. Therefore,

D∂/∂zσ is holomorphic over X = XA ∪XI and a globally defined holomorphic section of
F(P0)⊗ L(a). The case of D∂/∂zσ is similar. q.e.d.

Let σ0,σ1, · · · ,σn be a global section of H0(X) 7→ R2 for which H0(X,Lj ⊗ L(a)) =
Span{σj} for j = 0, 1, · · · ,m − 1 and H0(X,Lm ⊗ L(a)) = Span{σm, · · · ,σn}. Set sj =
ιa(σj) for j = 0, 1, · · · , n. Then, s0, · · · , sn is a free system of generators for Γ(XA,L). Let
B = C[λ,λ−1] be the ring generated by λ,λ−1. Let Vj and Vm be B-modules generated,

respectively, by sj and sm, · · · , sn, where j = 0, 1, · · · ,m− 1. We have

Γ(XA,L) =
mX
j=0

Vj ,

which is a h-orthogonal direct sum by Lemma 5.2. We denote by Πj : Γ(XA,L) −→ Vj a

h-orthogonal projection onto Vj .
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Lemma 5.4. The map sj : R
2 −→ Γ(XA,L) satisfies⎧⎪⎨⎪⎩

∂sj

∂z
∈ Vj

M
Vj+1 for j = 0, 1, · · · ,m− 1,

∂sk

∂z
∈ Vm

M
V0 for k = m, · · · , n,

and ⎧⎪⎨⎪⎩
Πj+1(

∂sj

∂z
) 6= 0 for j = 0, 1, · · · ,m− 1,

Π0(
∂2sm−1
∂z2

) 6= 0.
Proof. As before, write sj = e

afjθ with fj = σjθ
−1
a , where σj ∈ H0(X,Lj ⊗ L(a)).

[Case 1 : j = 0, 1, · · · ,m − 2] By Lemma 5.3 we have D∂/∂zσj ∈ H0(X,Lj(P0) ⊗ L(a)).
Recall that if L is non-special then so is L(P ) for any point P ∈ X. Therefore, we see that
Lj(P0) ⊗ L(a) is non-special by Corollary 5.1. Then, the Riemann-Roch formula implies
that h0(X,Lj(P0) ⊗ L(a)) = 2. Now, obviously, H0(X,Lj(P0) ⊗ L(a)) is generated by
σj ,σj+1 because Lj = Lj(P0) ⊗ OX(−P0) and Lj+1 = Lj(P0) ⊗ OX(−Q0), which show
that Lj and Lj+1 are subsheaves of Lj(P0). Therefore, we obtain

∂sj

∂z
∈ Vj

M
Vj+1.

Moreover, since ι−1a (∂sj/∂z) = (ζ−1fj + ∂fj/∂z)θa and ζ−1fjθa = ζ−1σj cannot be an
element of Γ(XI ,Lj ⊗ L(a)), we must have Πj+1(∂sj/∂z) 6= 0.
[Case 2 : j = m − 1] As in Case 1, we have ∂sm−1/∂z ∈ Vm−1

L
Vm, ι

−1
a (∂sm−1/∂z) ∈

H0(X,Lm−1(P0) ⊗ L(a)) and Πm(∂sm−1/∂z) 6= 0. In this case, although Lm is not a

subsheaf of Lm−1(P0), it is enough to consider Lm(−
P
Pi), which is a subsheaf of Lm.

Next, we show Π0(∂
2sm−1/∂z2) 6= 0. We have

ι−1a (
∂2sm−1
∂z2

) = (ζ−2fm−1 + 2ζ−1
∂fm−1
∂z

+
∂2fm−1
∂z2

)θa ∈ H0(X,Lm−1(2P0)⊗ L(a)).
Notice that Lm−1(2P0) = L(P0− (m−1)Q0−

P
Pi) and h

0(X,Lm−1(2P0)⊗L(a)) = 3 by
the Riemann-Roch formula. Hence, H0(X,Lm−1(2P0)⊗ L(a)) has a section coming from
a meromorphic section of L⊗ L(a) which has a pole of order 1 at P0. In fact, ζ−2fm−1θa
is such a section. We observe that Lm−1,Lm(−

P
Pi) and L(P0 − (m+ 1)Q0 −

P
Pi) are

subsheaves of Lm−1(2P0). Since λ−1σ0 is a section of L(P0 − (m + 1)Q0 −
P
Pi) (notice

that (λ) = (m+1)P0− (m+1)Q0 on U0 ∪U∞), it follows that Lm−1(2P0) is generated by
σm−1,σm, · · · ,σn,λ−1σ0. Among them, λ−1σ0 is the only one which has a pole of order 1
at P0, which implies that Π0(∂

2sm−1/∂z2) 6= 0.
[Case 3 : k = m, · · · , n] Similarly, we have ι−1a (∂sk/∂z) ∈ H0(X,Lm(P0) ⊗ L(a)) and
h0(X,Lm(P0) ⊗ L(a)) = n − m + 2. In this case, Lm and L(P0 − (m + 1)Q0 −

P
Pi)

are subsheaves of Lm(P0) and Lm(P0) is generated by σm, · · · ,σn,λ−1σ0. Thus, we have
∂sk/∂z ∈ Vm

L
V0. q.e.d.

Now, we are in a position to prove the following theorem.
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Theorem 5.1. Let l0, · · · , lm(m ≥ 2) be the subbundles of R2×Cn+1 constructed above.
Then l0 determines a harmonic map ψ0 : R

2 −→ CPn of isotropy order m.

Proof. Recall the map τ1 : Γ(XA,L) −→ Cn+1. We see that τ1(Vj) = lj . In fact, if

we denote by {σi} an orthonormal basis of H0(X,L) (which is independent of z, z) then
we have sj =

Pn

i=0 v
i
j(z,λ)σi and τ

1(sj) = (v
0
j (z, 1), · · · , vnj (z, 1)) ∈ lj , where we choose lj

corresponding to the choice of the orthonormal basis {σi} of H0(X,L).
Therefore, the map τ1 and the derivation ∂/∂z commute. Denote by πj : C

n+1 −→ lj

an orthogonal projection onto lj . Then, we also have that τ
1 ◦ Πj = πj ◦ τ1. It follows

from Lemma 5.4 that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂z
lj ⊂ lj ⊕ lj+1 for j = 0, 1, · · · ,m,

πj+1(
∂lj

∂z
) 6= 0 for j = 0, 1, · · · ,m− 1,

π0(
∂2lm−1
∂z2

) 6= 0,

(5.3)

where we use the convention that lm+1 = l0. Thus, a map ψ = (l0, l1, · · · , lm) : R2 −→
Fm(CPn) is a primitive map. In fact, the complexification of the tangent bundle of

Fm(CPn) is given by TC(Fm(CPn)) =
L

i 6=j Hom(li, lj). On the other hand, we have
(ψ∗β)(∂/∂z) has values in

Lm

i=0Hom(li, li+1) with lm+1 = l0 by (5.3). Since we are giving

Fm(CPn) the (m + 1)- symmetric space structure such that (lj)x is a ω
j- eigenspace of

the automorphism τx of order (m + 1), where ω = exp(2π
√−1/(m + 1)), we have [G1] =Lm

i=0Hom(li, li+1) with lm+1 = l0. Therefore, we see that ψ is a primitive map. Now, if

m ≥ 2 then ϕ = π̃ ◦ ψ : R2 −→ CPn is a harmonic map, where π̃ : Fm(CPn) −→ CPn is

the homogeneous projection. q.e.d.

When m = 1, we have a map ψ : R2 −→ F 1(CPn) = CPn. Since the condition of the

primitivity of ψ is meaningless in this case, the above argument is not applied. In this case,

we must calculate a holomorphic section of l0 and investigate the divisor of the section.

We omit the details. However, the following observation means that maps obtained in the

both cases are harmonic maps of finite type :

Let {s0, · · · , sn} be an orthonormal basis for H0(X,L) and set si(z) = ι−1a (si). We have

si(0) = si. Then {s0(z), · · · , sn(z)} is an orthonormal basis for H0(X,L ⊗ L(a)). Define
F (z,λ), which depends only on λ, z, by

(s0(z), · · · , sn(z)) = (s0, · · · , sn)F (z,λ).(5.4)

Let f(ζ) be any regular algebraic function of ζ on XA. Define Y (z,λ) by

(s0(z), · · · , sn(z))Y (z,λ) = f(ζ)(s0(z), · · · , sn(z)).
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Then we have

(s0, · · · , sn)F (z,λ)Y (z,λ) = (s0(z), · · · , sn(z))Y (z,λ)
= f(ζ)(s0(z), · · · , sn(z))
= f(ζ)(s0, · · · , sn)F (z,λ)
= (s0, · · · , sn)Y (0,λ)F (z,λ).

Therefore, we obtain Y (z,λ) = AdF (z,λ)−1 · Y (0,λ). Differentiating this equation, we
obtain dY = [Y, F−1dF ], i.e., Y (z,λ) is a polynomial Killing field. Thus, the corresponding
map is a primitive harmonic map of finite type by the results of [BFPP] and [Bu] and our

harmonic map ϕ : R2 −→ CPn is given by the first column vector of F (z, 1), which is a

framing of ϕ.

To obtain an explicit form of the harmonic map ϕ or the framing F (z, 1) constructed

in the above, we may use the equation (5.4). Let {ζ0, ζ1, · · · , ζn} be the elements of π−1(1).
We can evaluate the equation (5.4) at ζ = ζ0, ζ1, · · · , ζn with the same F (z, 1). Therefore,
we have ⎛⎜⎝ s0(z) |ζ0 · · · sn(z) |ζ0

...
. . .

...

s0(z) |ζn · · · sn(z) |ζn

⎞⎟⎠ =
⎛⎜⎝ s0 |ζ0 · · · sn |ζ0

...
. . .

...

s0 |ζn · · · sn |ζn

⎞⎟⎠F (z,λ).(5.5)

Let S0, · · · , Sn be a local frame around π−1(1) which has the properties Si(ζj) = 0 for

i 6= j and f · Si(ζi)ρX∗Si(ζi) = 1. If we express si around π−1(1) as

si =

nX
j=0

vijSj ,

then we see that
δik = h(si, sk)

=

nX
j=0

(f ·
X
l

vilSl(ζj)
X
m

vkmSm(ρX∗ζj)

=

nX
j

vijvkj ,

which shows that the matrixM = (Mij) withMij = sj |ζi is non-singular. Thus we obtain
a formula F (z, 1) =M−1 ·M(z).

Now, we give some examples

Example 5.1. Consider π : CP 1ζ −→ CP 1λ defined by ζ 7→ λ = ζ−3. Then (π) =
3(∞)− 3(0) and R = 2(∞) + 2(0), we must regard P0 = {ζ =∞}, Q0 = {ζ = 0}. Define
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L by L = OX(2(∞)). Then we have⎧⎪⎨⎪⎩
L0 = L⊗OX(−2P0) = OX ,
L1 = L⊗OX(−P0 −Q0) = OX((∞)− (0)),
L2 = L⊗OX(−2Q0) = OX(2(∞)− 2(0)),

which implies that we may set s0 = 1, s1 = ζ, s2 = ζ2 and s0(z) = e
a, s1(z) = e

aζ, s2(z) =

eaζ2, where a = zζ − zζ−1. Since π−1(1) = {1,ω,ω2}, where ω = (−1−√−3)/2, we have

M =

⎛⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞⎠ , M(z) =

⎛⎝ ez−z ez−z ez−z

ezω−zω ezω−zωω ezω−zωω2

ezω
2−zω2 ezω

2−zω2ω2 ezω
2−zω2ω

⎞⎠ .
Therefore, we can easily obtain F (z, 1) =M−1 ·M(z) and we see that ϕ : R2 −→ CP 2 is

a harmonic map of isotropy order 2. Note that ϕ is doubly periodic. We recommend the

readers to obtain the explicit form of F (z, 1). In the same way, we may calculate F (z, 1) in

the case where π is given by π(ζ) = ζ−(n+1), where we choose L = OX(n(∞)) and obtain
a harmonic map ϕ : R2 −→ CPn of isotropy order n (cf. [T1]), which is doubly periodic

for n = 1, 2, 3, 5. The case of π(ζ) = ζn+1 is also similar, where we choose L = OX(n(0))
and we see that 1, ζ−1, · · · , ζ−n are global sections, respectively, of L0,L1, · · · ,Ln.

Example 5.2. Consider π : X −→ CP 1λ defined by π(ζ) = 1
α
ζ3

(ζ−α)
(ζ−α−1) = λ as in

Example 3.2, where we suppose that 0 < α < 1 for simplicity. Then we have (π) =

3(0)+(α)−3(∞)− (α−1), R = 2(0)+(p)+(p−1)+2(∞) and X = CP 1ζ as in Example 3.2.

In this case, P0 = {ζ = 0}, P1 = {ζ = α}, Q0 = {ζ = ∞} and Q1 = {ζ = α−1}. Define
L = OX(3(0)). Then f : L⊗ ρX∗L −→ OX(R) is given by

f =
−ζ

(ζ − p)(ζ − p−1) ,

which is non-negative on XR. We have⎧⎪⎨⎪⎩
L0 = L⊗OX(−2P0 − P1) = OX((0)− (α)),
L1 = L⊗OX(−P0 −Q0 − P1) = OX(2(0)− (∞)− (α)),
L2 = L⊗OX(−2Q0) = OX(3(0)− 2(∞)).

Set ⎧⎪⎪⎨⎪⎪⎩
s0 =

1√
3α

ζ − α
ζ

, s1 =
1√
3α

ζ − α

ζ2
,

s2 =

r
1− α2

3α

1

ζ2
, s3 =

r
1

3α

(1− αζ)
ζ3

.

Then we see that s0 is a global section of L0, s1 a global section of L1 and s2, s3 global
sections of L2. Evaluating h(si, sj) at λ = 0 (π−1(0) = {0, 0, 0,α}), we easily see that
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{s0, · · · , s3} is orthonormal basis ofH0(X,L). Let {η0, η1, η2, η3} be the elements of π−1(1).
Notice that η0, η1 are solutions of the equation ζ + 1/ζ = (α +

√
α2 + 8)/2 and η2, η3 are

solutions of the equation ζ + 1/ζ = (α − √α2 + 8)/2. We also see that {eas0, · · · , eas3}
is orthonormal basis of H0(X,L ⊗ L(a)). Now, F (z, 1) = M−1 · M(z) is computable.
Obtaining the explicit form of F (z, 1) is left to the readers.

Example 5.3. We will give an example of which the spectral curve is an elliptic curve.

First of all, we will address some fundamental facts on elliptic functions.

[Weierstrass zeta-function]

Let L = Z ⊕ τZ, where τ is a complex number with Im(τ) > 0. The Wierstrass zeta-

function ζw(u) is defined by

ζw(u) =
1

u
+

X
ω∈L\(0,0)

{ 1

(u− ω) +
u

ω2
+
1

ω
},

which has a pole of order 1 at u = 0. Set

P(u) = − d
du

ζw(u),

which uniformly converges on each compact subset and calledWeierstass P−function. We
have

d

du
P(u) = −2

X
ω∈L

1

(u− ω)3 .

The definition of the summation means that d
du
P(u) is invariant under the translations

u→ u+ 1 and u→ u+ τ . Hence, d
du
P(u) is doubly-periodic function. Therefore we may

set (
P(u+ 1)− P(u) = c1
P(u+ τ)− P(u) = c2

where c1, c2 are some complex numbers. On the other hand, since P(u) is obviously even
function, by setting u = −1/2 or u = −τ/2 in the above equations we have c1 = c2 = 0.
Therefore we see that the Weierstrass P−function is doubly-periodic with periods 1, τ .
Integrating P−function, we have(

ζw(u+ 1)− ζw(u) = A
ζw(u+ τ)− ζw(u) = B

where A,B are some complex numbers. Notice that the residue theorem yields that

1

2π
√−1

Z
∂Pa

ζw(u)du = 1
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where Pa is some fundamental domain of the torus R
2/L. The integration of ζw(u) on Pa

turns out to be Aτ − B, which yields, so-called, Legendre’s relation :

Aτ −B = 2π√−1.

[Jacobi’s 1st theta function]

Let p(u) = exp(π
√−1u), q = exp(π√−1τ). Then the Jacobi’s 1st theta function θ1(u) is

defined by

θ1(u) =
√−1

X
n∈Z

(−1)np(u)2n−1q(n− 1
2
)2 .

By changing n → −n + 1 in the summation we see that θ1(u) is an odd function. In
particular, we have θ1(0) = 0. Moreover, since (n − 1

2
)2 + (2n − 1) = (n + 1

2
)2 − 1, the

definition of the summation gives the following relations :(
θ1(u+ 1) = −θ1(u)
θ1(u+ τ) = −p(u)−2q−1θ1(u)

(5.6)

With these facts in mind, we may construct a meromorphic function on some elliptic

curve.

Let X = R2/L be a two-torus with lattice L = Z⊕√−1tZ, where t is some positive
real number. In this case, we have ζw(u) = ζw(u). Define a function ψ(z, z, u) on X by

ψ(z, z, u) = exp((ζw(u− P0)−Au)z − (ζw(u−Q0)−Au)z)×(5.7)

θ1(u− F1) · · · θ1(u− Fk)θ1(u− P0)mθ1(u− P1) · · · θ1(u− Pn−m)θ1(u−G− z + z)
θ1(u− E1)θ1(u− E2) · · · θ1(u− En+k+1)

,

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L ∼= OX(D), D =

n+k+1X
i=1

Ei −
kX
i=1

Fi,

G = D −mP0 −
n−mX
i=1

Pi.

Hence, L is a divisor line bundle of degree (n+1). It follows from (5.6) that ψ(z, z, u+1) =
ψ(z, z, u),ψ(z, z, u +

√−1t) = ψ(z, z, u), i.e., ψ(z, z, u) is a meromorphic function on X

with fixed z, z. Moreover, since ψ behaves like exp(zζ−1 + O(ζ)) near P0 and behaves
like exp(−zζ + O(1/ζ)) near Q0 and ψ has a divisor −D on X \ {P0, Q0}, we see that
ψ(z, z, u)θA belongs to H

0(X,OX(D)⊗ L(a))(see [T2]).
Now, consider a function

g(u) = exp(4π
√−1u)¡θ1(u−R1)

θ1(u−R2)
¢4
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on X, where R1 =
√−1/4, R2 = 3

√−1/4 = ρX(R1) and ρX(P ) = P mod L. It follows

from (5.6) that g(u) is a meromorphic function onX. Define a covering map π : X −→ CP 1

by π(u) = g(u)/g(
√−1/2). Then we have(

(π) = 4(R1)− 4(R2)
R = 3(R1) + (R3) + (ρX(R3)) + 3(R2)

for some point R3 ∈ X\XR. Therefore, we have P0 = R1, Q0 = R2. Let L = OX(3R1+R3)
be a line bundle over X of degree 4. We see that π−1(1) = {0, 1/2,√−1/2, 1/2+√−1/2}.
It follows that each point of π−1(1) is fixed by the real structure ρX . In this case, we have
L0 = OX(R3),L1 = OX(R1+R3−R2),L2 = OX(2R1+R3− 2R2),L3 = OX(3R1+R3−
3R2). Set η0 = 0, η1 = 1/2, η2 =

√−1/2, η3 = 1/2 +
√−1/2. By choosing some constants

c0, c1, c2, c3, we may define an orthonormal basis {si} of H0(X,L) by

si = ci
θ1(u− η0) · · · θ1(u− η̂i) · · · θ1(u− η3)

θ1(u− R1)3θ1(u−R3)
,

where η̂i = 3R1+R3− (η0+ · · · ηi−1+ ηi+1+ · · ·+ η3). In fact, it follows from the positive

definiteness of h that η̂i 6= ηi. Now, we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0(z) =
1

c0

θ1(u−R1)3θ1(u−R3 − z − z)
θ1(u− η̂0)θ1(u− η1)θ1(u− η2)θ1(u− η3)

exp(f(z, u)),

s1(z) =
1

c1

θ1(u−R1)2θ1(u− R2)θ1(u−R1 −R3 +R2 − z − z)
θ1(u− η0)θ1(u− η̂1)θ1(u− η2)θ1(u− η3)

exp(f(z, u)),

s2(z) =
1

c2

θ1(u−R1)θ1(u−R2)2θ1(u− 2R1 − R3 + 2R2 − z − z)
θ1(u− η0)θ1(u− η1)θ1(u− η̂2)θ1(u− η3)

exp(f(z, u)),

s3(z) =
1

c3

θ1(u−R2)3θ1(u− 3R1 − R3 + 3R2 − z − z)
θ1(u− η0)θ1(u− η1)θ1(u− η2)θ1(u− η̂3)

exp(f(z, u)),

where f(z, u) = exp((ζw(u−R1)−Au)z−(ζw(u−R2)−Au)z). Then F (z, 1) =M−1 ·M(z)
is computable and the first column vector of F (z, 1) gives a harmonic map of R2 into CP 3

with isotropy order 3(i.e., superconformal harmonic map).

We will discuss the double periodicity of our harmonic map R2 −→ CPn of isotropy

order m and the construction of spectral data from them elsewhere.
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