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Abstract. We prove that any pluriharmonic map from a compact complex manifold
with positive first Chern class (defined outside a certain singularity set of codimension
at least two) into a complex Grassmann manifold of rank two is explicitly constructed
from a rational map into a complex projective space. Under some restrictions on
dimension and rank of the domain manifold and the target manifold, respectively, we
also prove that similar results hold for other complex Grassmann manifolds as targets.

Introduction. Let φ: M -> N be a smooth map from a complex manifold into a
Riemannian manifold. Then, φ is said to be pluriharmonic if the (0, l)-exterior covariant
derivative D"dφ of the (1, O)-differential dφ of φ vanishes identically. Let V̂  be the
pull-back connection on the pull-back bundle φ~^TN. We have

(0.1) (P"dφ){X, Y) = V$dφ(Y)-dφ(dχY), X,

where Γ M 1 0 is the holomorphic tangent bundle of M. If φ~1TNc has the
Koszul-Malgrange holomorphic structure, that is, the (0, l)-part of Vφ coincides with
the δ-operator, we may say that φ is pluriharmonic if and only if φ sends any
holomorphic section of TM10 to a holomorphic section of φ~1TNc. It is easily seen
that if φ is holomorphic and TV is a Kahler manifold then φ~1TN1'0 has the
Koszul-Malgrange holomorphic structure, hence any holomorphic map is pluri-
harmonic. Note that an anti-holomorphic map is also pluriharmonic if N is a Kahler
manifold. Conversely, the existence of the Koszul-Malgrange holomorphic structure
OIK/)"1 TNC is ensured if φ is pluriharmonic and Nhas nonnegative or nonpositive cur-
vature operator. In this case, if N is a Kahler manifold, then φ~1TN1'0 has the
Koszul-Malgrange holomorphic structure (cf. [O-U2]). From the point of view of
Riemannian geometry, the most interesting property of pluriharmonic maps is that it
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is a harmonic map with respect to any Kahler metric on M. Therefore, the concept of
pluriharmonic maps generalizes that of harmonic maps for Riemann surfaces. Moreover,
when one restricts a pluriharmonic map from M to any holomorphic curve C of M, it
induces a harmonic map from C into N. A natural question is: Which class of pluri-
harmonic maps comes from holomorphic maps? This question is treated in [O-Ul]. As
a special case, if the target is a complex Grassmann manifold Gk(Cn) of fc-dimensional
complex linear subspaces in C*1, any pluriharmonic map φ from a Kahler manifold M
is ± -holomorphic provided the rank of dφ over R is greater than or equal to
2(n — k— l)(/c—1) + 3, where a map is said to be +-holomorphic if it is holomorphic or
anti-holomorphic. In the case of an M with cί(M)>0 and b2(M)= 1, the rank condition
on φ may be replaced by dimcM>(n-fc-l)(/c-l) + 2 and this dimension estimate is
best possible. In fact, there are so many examples of pluriharmonic maps which are
not ±-holomorphic (see [O-Ul]). Then, the following problem arises: Classify all
pluriharmonic maps which are not +-holomorphic. In the following, we restrict our
attention to the complex Grassmann manifolds as the target manifold. In the case where
the domain is the Riemann sphere, this problem was treated and solved by several
authors [Rm], [C-W], [B-W], [B-S], [Wol], [Wdl], who proved that any harmonic
map from the Riemann sphere S2 into Gk(Cn) may be constructed from a holomorphic

map S2 -• Gt(Cn)for some \<t<k. This result originates from the work of Burns [Bn],
Din-Zakrewski [D-Z], Glaser-Stora [G-S] and Eells-Wood [E-W] with a complex
projective space as target. Given a map φ: M -» Gk(Cn), we may identify φ with the
pull-back of the universal bundle over Gk(Cn) by φ, denoted by V(φ), which is a complex
subbundle of the trivial bundle M x Cn. We have a sequence of the d'-Gauss bundles by
taking the image of the (1, 0)-part of the second fundamental form of each subbundle.
Wolf son proved that this sequence must terminate if M=S2. In general, φ has
intersection with certain d'-Gauss bundle, say the (r+ l)-th Gauss bundle, and the least
such integer r is called the d'-ίsotropy order of φ. A holomorphic map has infinite
d'-isotropy order, hence one tries to increase the d'-isotropy order of a given map by
certain algebraic replacement, which is called the forward replacement. It is known that
Wolfson's harmonic map sequence can be obtained by a successive application of the
forward replacements (for details, see Section 2). This is the method of Burs tall-Wood.
In particular, they proved that any harmonic map of finite d'-isotropy order from S2

into Gk(Cn) with k = 2, 3, 4, 5 may be obtained by a successive application of the backward
replacement from a holomorphic map S2 -• Gt{Cn) with 1 < t < k — 1, where the backward
replacement is the inverse procedure of the forward replacement (see Section 2). Note
that the case of infinite isotropy order is rather easy to treat for any k. For higher
dimensional domains, we assume that M is a compact complex manifold with positive
first Chern class, denoted by c^M) > 0. However, there are many difficulties. For example,
the d'-Gauss bundle of φ has non-removable singularities, and its rank may be greater
than that of V{φ). Therefore, it seems to be impossible to generalize Wolfson's method
to higher dimensional case. On the other hand, Ohnita and the present author [O-U2]
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treated a part of the problem using Burstall-Wood's method and proved that any
pluriharmonic map φ from M\Sφ with M as above into Gk(Cn) may be obtained from
a rational map/: M-*Gt{Cn) for some t provided (1) k=l, or (2) k = 2, 3 and «<12,
where Sφ is a certain singularity set of codimension at least two (see Section 2). As in
the case of harmonic maps from the Riemann sphere, a pluriharmonic map with infinite
isotropy order is easier to treat (see Proposition 4.3). Note that any pluriharmonic map
from M\Sφ with M and Sφ as above-into a complex projective space CPn~ι with the
Fubini-Study metric has infinite isotropy order, which is the reason why there is no
restriction on n for Gί(Cn) = CPn~ί in the result stated above. Moreover, in this case,
the uniqueness of the sequence of pluriharmonic maps is also ensured. Even if a
pluriharmonic map φ: M -• Gk(Cn) has singularities, the nilpotency of certain
End(F(φ))-valued holomorphic differentials is preserved, hence we may apply their
method to increase the δ'-isotropy order by one, that is, the first step of the procedure
is the same as in the case of M = S2. However, in higher dimension, the next step of
the procedure cannot be applied because the situation rank G\φ) > rank V(φ) may occur.
This is the main reason for the restriction on n in the result stated above.

The main purpose of this paper is to prove that any pluriharmonic map
φ: M\Sφ -• G2(Cn) with finite d"-isotropy order may be obtained by a successive

application of the forward replacement and extension from a pluriharmonic map

φ°: M\Sφo-^CPn~1 (Theorem 4.2). This technique is partially applied to the case
where the target is Gk(Cn) with A: = 3, 4, and similar results with restriction on n are
also true (see Section 6).

In Section 5, we give some examples of pluriharmonic maps of CP2 which has
finite <3'-isotropy order.

We refer the reader to [E-L] for recent developments on harmonic map theory,
to [B-B-B-R], [B-B], [O-U1,2], [Ud] for the stability and complex-analyticity of
pluriharmonic maps, and to [B-R], [Uh], [V], [Wd2] for the construction of harmonic
maps from the Riemann sphere to Lie groups. Finally, we mention that Ohnita and
Valli [O-V] generalized the results of [Uh], [V] to the class of meromorphically
pluriharmonic maps. Their assumption on the domain manifold M is slightly weaker
than that of ours. On the other hand, when cί(M)>0, our class of pluriharmonic maps
is slightly wider than that of theirs. In the case of Lie groups as targets, there is a
similar concept called basic transform corresponding to our forward (or backward)
replacement. We remark that the method using the basic transform is not established
yet, and that even if it is established our results are not covered by it (cf. [Wdl]).
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1. Preliminaries. Let E be a unitary vector bundle over a complex manifold M,

that is, E is endowed with a Hermitian fibre metric h and a connection V£ compatible

with h. Let F be a complex subbundle of E and let S be the Hermitian orthogonal

complement of F in E with respect to h. Then, F and S also become unitary vector

bundles with respect to the induced Hermitian structures. The second fundamental

forms, AS'F and AFS, are defined by

(1.1) Vf v = Ψxυ + AFΛv), Vf w = V£w + Λ | »

for any X G C ° ° ( Γ M ) , t?eC°°(F), weC°°(S), where V£, VF and Vs are the Hermitian

connections of F, F and S, respectively, and AFS (resp. ,4S'F) is regarded as a

Hom(F, S)-valued (resp. Hom(5, F)-valued) 1-form on M. We easily obtain

(1.2) v 4 F ' 5 = - ( Λ s ' F ) * ,

where ( )* denotes the adjoint of ( ) with respect to h. By the complex structure of

M, we may decompose AF'S as AF'S = AF{^0) + AF^iy Let D be the exterior covariant

differentiation defined by the induced connection on Hom(F, S), and D\ D" the (1,0)-

and (0,l)-parts of D, that is, D = D' + D". The (0,l)-exterior covariant derivative

D"AF{S

O) of 4̂fiSo) is defined by

(1.3) ΦXίSo))(Z, W) = VϊoA*?-AϊfoVΪ-Atfw,

where Z, WeC^iTM1'0). DΆF^S

Λ) is defined similarly. Now, assume that E has the

Koszul-Malgrange holomorphic structure, that is, a holomorphic structure compatible

with the Hermitian structure of F, and that F is a holomorphic subbundle of F. We

may endow S with a holomorphic vector bundle structure by the isomorphism S = E/F,

which is, in fact, nothing but the Koszul-Malgrange holomorphic structure (cf. [B-S]).

Then, Hom(F, S) also has the Koszul-Malgrange holomorphic structure and a smooth

section A of T*MU0® Hom(F, S) is said to be holomorphic if DffA = 0.

Let φ: M -> Gfc(Cπ) be a smooth map from a complex manifold into a complex

Grassmann manifold of ^-dimensional complex linear subspaces in Cn. Then, we may

identify φ with a complex subbundle V(φ) of rank k of the trivial bundle V(Cn) = M x C",

of which the fibre at xeM is given by φ(x). Note that F(φ) is the pull-back of the

universal bundle T over Gk(Cn) by φ.

For any complex subbundle F of F(Cn), we denote by E1 the Hermitian orthogonal

complement of E in V(Cn) with respect to the standard Hermitian fibre metric on V(Cn).

Moreover, for any complex subbundle F Qf F, we denote by F θ F the Hermitian

orthogonal complement of F in F, that is, EQF = E n F 1 .

Set
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where φ1 is a map from M into Gn-k(Cn) and V(φ1)=V(φ)1. Then, by (1.2) we obtain

(1.5) ΛfU0)= - « υ ) * , ΛfOΛ)= - « , 0 ) ) * .

The property of φ may be interpreted in terms of the property of Aφ. In fact, we have:

PROPOSITION 1.1 (cf. [O-U2]). (I) The following statements are mutually equivalent:

(1) φ is holomorphic (resp. anti-holomorphic).

(2) V(φ) is a holomorphic (resp. an anti-holomorphic) subbundle of V(Cn).

(3) AfOΛ) = 0 (resp. Aflt0) = 0).

( I I ) φ is pluriharmonic if and only if D"Af1O) = 0, or equivalently DΆfOΛ) = 0.

(III) φ is pluriharmonic if and only if φ1 is pluriharmonic.

In fact, we may say that if φ is pluriharmonic then Af10) is a holomorphic section

of T*MUO ®Hom(V(φ), V(φλ)) by Proposition 1.1, (II) and the following fact:

PROPOSITION 1.2 (cf. [O-U2]). If φ is pluriharmonic, each of V(ψ) and V(φL) has

the Koszul-Malgrange holomorphic structure. In particular, any holomorphic subbundle

of V(φ) or V(φ±), and its Hermitian orthogonal complement in V(φ) or V(φL) have the

Koszul-Malgrange holomorphic structures.

It follows from Propositions 1.1 and 1.2 that if φ is pluriharmonic, then Af^0) is

also a holomorphic section of Γ*M1'°(x)Hom(K(φ-L), V(φ)).

2. A general construction of pluriharmonic maps. Let φ: M -> Gk(Cn) be a

pluriharmonic map from a complex manifold. A general theory for the construction of

pluriharmonic maps is quite similar to the one of harmonic maps for Riemann surfaces

except that non-removable singularities appear. Here, we review the construction (cf.

[Wdl], [B-W], [O-U2]).

PROPOSITION 2.1. Define φ by

(2.1) V(φ) = (V(φ)Qu)®β,

where oc and β satisfy the following conditions (1), (2):

(1) α and β are holomorphic subbundles of V(φ) and V(φL), respectively,

(2) AfU0)(μ)c:T*M1'0®β, AfcO)(β) c Γ M ^ φ α .
Then, φ is also a pluriharmonic map from M into Gt(Cn) for some t.

REMARK. We may use Af0Λ) and AfoΛ) in place of Aflt0) and i4J"1

1

f0), respectively.

In this case, α and β are chosen to be anti-holomorphic subbundles of V(φ) and V(φλ),

respectively.

To give the examples of α and β which satisfy the conditions (1), (2) of Proposition

2.1, we consider Af10) as a bundle homomorphism Af10): TM1'0(x) V(φ)-+ V(φL) and

set ImA^ 1 0 )=(J j c e MIm(v4J ίi 0))x. Im>4JΊt0) is a holomorphic subbundle of V(φL) over

M\W, where W is an analytic subset of M. It can be observed that Im Afλ 0 ) extends
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to a holomorphic subbundle, denoted by InMf 1 0 ) , of V(φL) over M\S, where S is an

analytic subset of codimension at least 2. Similarly, considering Λf10) as another

homomorphism Aflt0): V(φ) -• T*MU0 <g> V(φλ) we set Ker AfU0) = \JχeM Ker(AfU0))x. In

the same way as above, K e r ^ 0 ) extends to a holomorphic subbundle, denoted by

Ker 4̂(Ί ,o)j of V(φ) over M\Sf, where 5' is an analytic subset of codimension at least

2. When we construct a new pluriharmonic map from an old one, we have a new

singularity set, hence we give the following definition:

DEFINITION. Denote by Sφ the singularity set of M with codimCiS<p>2 such that

φ is a pluriharmonic map from M\Sφ. Sφ is of the form Sφ=[jk

j=1 Sj for some positive

integer k and each St (i = 1,..., k) is an analytic subset of M \ ( J } ~ \ S} with c o d i m ^ > 2.

The following lemma enables us to use the method of Burstall-Wood even if the

singularity set appears:

LEMMA 2.1 (cf. [O-U2]). Assume that M is a compact complex manifold with

positive first Chern class cί(M)>0. Let E be a Hermitian holomorphic vector bundle over

M\S, where S is as in the Definition with or without the assumption on φ, and let A be

a holomorphic multi-differential with values in End(£). Then, A is nilpotent, that is, Am = 0

as a holomorphic multi-differential with values in End(£) for some positive integer

m < r a n k £ .

For example, Afit0)°Afίt0) is a holomorphic quadratic differential with values in

Έnd(V(φ)) over M\Sφ, hence nilpotent by Lemma 2.1 if M is compact and c 1(M)>0.

In particular, A^0)oA^l0) has the non-trivial kernel. In this case, any non-zero

holomorphic subbundle α of V(φ) contained in Ker(Afit0)oAfίt0)) satisfies the condi-

tions (1) and (2) of Proposition 2.1 with /J = Im(i4fti0)|α) (see Lemma 2.2 below for

the holomorphy of Afx>0)|α).

LEMMA 2.2 (cf. [B-W], [O-U2]). Let τ and μ be Hermitian vector bundles over

M with the Koszul-Malgrange holomorphic structures and let A be a holomorphic

multi-differential with values in Hom(τ, μ). Then, the following statements are true:

(1) If OL is a holomorphic subbundle of τ, then A\Λ is holomorphic.

(2) Ifβ is an anti-holomorphίc subbundle ofμ and π: μ^βisa Hermitian orthogonal

projection, then no A is holomorphic.

(3) Ifγ is a subbundle of τ with τQγ a Ker^l and if y has the Koszul-Malgrange

holomorphic structure with respect to the connection induced from τ, then A\y is a

holomorphic multi-differential with values in Hom(y, μ).

(4) If δ is a subbundle of μ containing the image of A and if δ has the

Koszul-Malgrange holomorphic structure with respect to the connection induced from μ,

then A is a holomorphic multi-differential with values in Hom(τ, δ).

In summary, we state the following:
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PROPOSITION 2.2. Let φ: M\Sφ -• Gk(C") be a pluriharmonic map. Then, the

following map φ defines a pluriharmonic map M\S$^>Gt(C") for some t:

(2.2)

(2.3)

(2.4) V(φ) = (V(φ)θoc)®hn(AfίyO)\a), where oc is a holomorphic subbundle of V(φ) con-

tained in K e r ^ ^ o j o ^ 0 )), ifocφO, which is satisfied if M is compact and c1(M)>0.

However, (2.3) may be considered as a special case of (2.4) because Ker^j", 0 ) is

contained in KQΐ(Af^0)o Af10)). Moreover, if M i s compact and c 1(M)>0, then (2.2) is

also obtained by successive application of the procedure of type (2.4), which follows

from more general Proposition 2.3 below. For notational simplicity, we give:

DEFINITION (cf. [B-W]). Set G(1\φ) = Gf{φ) = ]mAfU0) and inductively define the

r-th d'-Gauss bundle G{r\φ) of φ by

G(ί + 1)(φ) = σ(Gii\φ)) for i = l , 2,

Similarly, define the r-th ΰ"-Gauss bundle G{~r)(φ) by

&-1\φ) = G"(φ) = lmAf0Λ), G (- i-1>(φ) = G"(G(- ί)(φ)) for i = l , 2

In particular, set G'φ(tx) = Im(Afί>0)|α) and Gφ(γ) = ]m(AfOΛ)\y) for a holomorphic sub-

bundle α of V{φ) and an anti-holomorphic subbundle γ of V(φ), respectively.

PROPOSITION 2.3. Assume that M is compact and cl(M)>0. Let φ: φ

Gk(Cn) be a pluriharmonic map and define φ by V(φ) = (V(φ)QθL)@ β, where α and β

satisfy the conditions (1) and (2) of Proposition 2.1. Then, there is a finite sequence {φJfLo

of pluriharmonic maps such that (1) φ = φ0, (2) φ = φN, (3) for Ϊ = 0, 1,..., JV — 2, each

φi+ί is obtained from φt by V(φi + 1) = (V(φi)Qoci)®Gφi((xi), where α£ is a holomorphic

subbundle of V{φ^ contained in K e r ^ ^ o j o ^ ^ 0 )), and φN is obtained by either of the

following'.
( I ) Ifβ = G'φ((x), φN is also obtained from φN_xby the procedure (3) for i=N—l,

(II) IfβΦ G;(α), there is a holomorphic subbundle βN_1 of(V(φN_ t) 0 G"(φN_ i))1

so that φN is obtained from φN-1 by V(φN) = V(φN_1)@ βN-!

PROOF. By Lemma 2.2, Af^0) o Afίj0) |α is a holomorphic quadratic differential with

values in End(α). It follows from Lemma 2.1 that Af^0)oAflf0)\a is nilpotent. The rest

of the proof proceeds in the same way as the one for Proposition 2.12 in [Wdl]. q.e.d.

DEFINITION (cf. [Wdl]). We call the procedure (2.4) the forward replacement of

φ by α, and call the procedure like (II) in Proposition 2.3 the forward extension of φN_ x

by β v-i When, we use the (0, l)-part of the second fundamental form and an

anti-holomorphic subbundle, we call the corresponding procedures the backward

replacement and backward extension.

To better understand Proposition 2.3, a certain diagram called Salamon's diagram
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in [B-W] is useful.

Let h0 be the standard Hermitian fibre metric on V(Cn) = M x C . Let τί9..., τk

be a set of mutually orthogonal subbundles of V(Cn) with respect to h0 such that each

τ{ ( ί = l , ...,fc) has the Koszul-Malgrange holomorphic structure compatible with the

Hermitian structure induced from h0 and V(Cn)= © f c

= 1 Tj. Denote by A^fy the

(1, 0)-second fundamental form of τf in T,-©^- for 1 <iφj<k.

DEFINITION (cf. [B-W]). By a diagram {τh -4(i\τ6)} w e mean the directed graph

with vertices τ l 5 . . . , τk and for each pair (i,j) and edge from τi to τ^ representing ^4(i%.

The absence of an edge in the graph indicates the vanishing of the corresponding

(1, 0)-second fundamental form.

Some statements of Lemma 2.2 are expressed by this diagram as follows:

LEMMA 2.3 (cf. [B-W]). Given a diagram {τi9 Λftfy}, Aτft%: τi®TMU0-^τj is

holomorphic if the diagram contains no configurations of the forms in Figure 1.

If Al^l(l<i<k— 1) and A\\^ are all holomorphic, we see that the composite

^(ϊ;τo)°^(ΪΓoVτko"'' °Aa% is a holomorphic section of ®k T*M10 <g> EndOO by Leibniz'

rule, hence nilpotent. We often refer to it as a holomorphic circuit and denote it by

{τ l5 τ 2 , . . . , τk, τ j for notational simplicity.

Let φ : M -• Gk(Cπ) be a pluriharmonic map from a complex manifold.

DEFINITION (cf. [BD-W1,2], [B-W]). We say that φ has d'-isotropy order r if

V(φ) is orthogonal to each G(0(φ) (1 <i<r) and not orthogonal to G{r+1)(φ) with respect

to h0. Moreover, we say that φ has finite (resp. infinite) δ'-isotropy order if r< oo (resp.

r = oo). Similarly, the corresponding notion oϊd"-isotropy order for the 3"-Gauss bundle

is defined.

Note that V(φ)LG\φ) and V(φ)λGff(φ) always hold, so that any φ has d'- and

3"-isotropy order > 1.

LEMMA 2.4 (cf. [O-U2]). If φ has d'-isotropy order >r , then G(i\φ)lGU)(φ) for

any i, j such that 0 < | ί — j | < r.

(1)

where \<l<k with Iφij.

J

(2)

FIGURE 1.

(3)
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If φ has δ'-isotropy order > r, then, by Lemma 2.4 we may set

R = % i)θ(®G ϋ )W).
\JΊ J

It follows from Proposition 1.2 and Lemma 2.2 (3) that V(φ), G(i)(φ) (l<i<r) and R

all have the Koszul-Malgrange holomorphic structures compatible with the Hermitian

structures induced from h0, and A$$f{φ) and Af"0

(f>G(i + l)(<p) ( l < i < r - l ) are all holo-

morphic. We often use this fact, without any comment, in the sequel.

If φ is a holomorphic map, then ΛfOΛ)= —(Af^O))* = 09 so that ^ = 0 and

V(φ)lG(ι\φ) for any i> 1. Therefore, a holomorphic map has infinite d'-ίsotropy order.

In the same way, we see that an antί-holomorphic map has infinite d"-isotropy order.

Given a pluriharmonic map φ of infinite d'-isotropy order, we see by Lemma 2.4

that there is a positive integer s such that G{s\φ) = 0. Therefore, Gis~1](φ) defines an

anti-holomorphic map. When the target manifold is a complex projective space CPn~ι

with the Fubini-Study metric, it turns out that any pluriharmonic map from a compact

complex manifold M with ci(M)>0 has infinite d'- and <3"-isotropy order:

THEOREM 2.1 (cf. [O-U2]). Assume that M is compact and cί(M)>0. Let

φ: M\Sφ^CPn~1 be a pluriharmonic map. Then, Gis\φ) = 0 for some positive integer

s<n—\. Moreover, if φ is non-holomorphic, each G(i\φ) (0<ί<s— 1) defines a pluri-

harmonic map into CPn~ι, and G{s~ι\φ) defines an anti-holomorphic map.

3. Pluriharmonic maps into G2(Cn). In this section, we give a method of

constructing a pluriharmonic map φ: M\Sφ -• G2(Cn), where M is a compact complex

manifold with c 1(M)>0. We may assume that φ has finite δ'-isotropy order.

Let r (> 1) be the δ'-isotropy order of a pluriharmonic map φ: M \ S φ - > G2{Cn).

Set

A r,φ- A ( l ,0) ^(l.O) A(l,0)

LEMMA 3.1. Af$f) V{φ) is holomorphic and A2

rφ = §. Define φ1from φ by the for-

ward replacement o/αg, where a°0 = Im AG^)Ύ(φ) a Ker Ar%φ and rank αg = rank V(φ) -1.

Then, either φ^ is a pluriharmonic map into CPn~1 or, φγ has d'-isotropy order r + 1 and

has the following properties:
(1) ^^yHΦi) .^ ! ) is holomorphic and A^+Uφί = 0.

(2) Set *b = lmA$%lHφί)-Viφi) a KerAr+Uφί and set α? = G;(αg). Then, rankαj =

r a n k F ^ i ) — 1 and the Hermitian orthogonal projection Px: α o ^ α ? is a holomorphic

isomorphism.

(3) Set R = V{φL) θ(®]=1 Gu\φ)) and set αr° = G%\d°0). Then, A$% is holomorphic.

Set J^0 = R Θ W « Ϊ ; * . ThenM + 'XφJ^RΌ®^.

(4) Set<x} = G%(aLh)forj=l,...,r + 2. Then, α r

x

+ 1 c ^ 0 andαr

1

+2cRf

0@a°0.

(5) Set R'ί=((RΌ®x0

0)ΘGir+iXφ1))θ*l+2. Then, R^lα? and A#;ξ} = 0.



376 S. UDAGAWA

PROOF. By Lemma 2.4 we have a diagram as in Figure 2, where R =
V(<P±)θ(®r

j=1G
ir)(φ)). First, we show that Afffi™ is holomorphic. If r = l , then

G(r)(φ) is a holomorphic subbundle of V(φL) and Affif™ = Afc0) |G<,)(<P) is holomorphic
by Proposition 1.1 and Lemma 2.2. If r>2, then, by Lemma 2.3, Af^)y{φ) is holo-
morphic. Therefore, Arφ is a holomorphic differential with values in End(F(φ)). Then,
by Lemma 2.1 we have A^φ = 0, so that αg = Im Afffi™ cz Ker A,ψφ c K e r ^ 1 ^ ° Λf1>0))
and rank αg = 1. Set α? = G<?(αg) for i = 1,..., r, and set yg = V(φ) θ αg, 7? = G(ί)(φ) θ α? for
i= 1,..., r. Then, we have a diagram as in Figure 3. By Lemma 2.3, we see that Afl'ϊJf \
A$$" ( 0 < i < r - l ) , A(l$ and A$% are all holomorphic. Further, set α ^ ^ I m i ^
and set R'0 = RQoζ+ι. Again, we have a diagram as in Figure 4. By Figure 4 and
Lemma 2.3, we see that i4jff

+

oy
y" is also holomorphic. We have a holomorphic circuit

{αo, α?,. . . , α?+19 yg, 7?,..., y?, αg}, which must vanish by Lemma 2.1. However, since
Λ(

vί;$+1 (0<i<r-1) and ^ ^ are all surjective and rankyg= 1, we obtain A^yi = 0.
Hereafter, if α? = 0 for some l < i < r + l we understand that i4jff

+

oy
y8 = 0 is trivially

satisfied. Set K(φ1) = (F(φ)θαg)0α?. If α? = 0, then rank V{φi)=l and φt is a

FIGURE 2.

FIGURE 3.

FIGURE 4.
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V(φγ) G'{φι)
FIGURE 5.

pluriharmonic map into CP"'1. Therefore, we assume that α? ̂ 0 . Then, by Figure 4 we

have

so that φx has <3'-isotropy order r + 1 . Further, we investigate the properties of φί.

Setting # x =(Rf

0 0OCQ)θ Gir+1)(φί), we have a diagram as in Figure 5. By Figure 5 and

Lemma 2.3, we see that Aflr

tQ)){φι)Ύ{φύ is holomorphic. We have a holomorphic circuit

{V{Ψl\ G'( Φ l ) , . . . , G f r + 1 ) ( φ i ) , K(Φ l)}. Setting

we see that Ar+Uφι is nilpotent. Set α ^ I m y l ^ / ^ 1 * ' ^ 1 * . Then, rankαj<rank

— 1. Let P 1 : G(r + 1 )(φ1)->αo and P i : αj->α? be the Hermitian orthogonal projec-

tions. It follows from the surjectivity of AJΐfy and the fact that G(Γ)(φ1) = y ? 0 α ? + 1 that

P 1 is surjective. Since (/*'<,© αg)±α?, G^" 1 " 1 ^!) c ^ © α g and ^ ^ = 0 by Figure 4,

we obtain

where ι;6Cα 0(G ( r + 1 )(φ1)), which, together with the surjectivity of P 1 and A$$9 implies

that P x is surjective. There, we have rank αj >rank α? = rank F ^ i ) — 1, which, together

with the opposite inequality above, implies that rankOCQ = rankα? = rank F ^ J — 1 and

P x is an isomorphism. P x is holomorphic by Lemma 2.2. Now, we show that A,+ l φ ι = 0.

Set α/= GjίKαo), which is a holomorphic subbundle of G ^ J , for i = l , . . . , r + l . If

P 1 ! ^ ^ : α r

x

+ 1 ^ α g is surjective, it follows from (3.1) that P1(Im(^α, ro)1)(</>l)'K(φi) |^+1)) =

P^αJ), hence Im(i4(^
(

f

l

o

+

)

1)(φi) F ( φ l ) | α i + i) = αo, which contradicts the nilpotency of Ar+Uφι.

Therefore, /5 1 |βχ+ i = 0 by rankαg = l, and hence a}+1 c Ker Aft^'W* by (3.1) and

the isomorphy of Pί. Thus, we have proved that A?+lφί=0. Moreover, we obtain

ocl+1 aR'o and ocl+2 = ]m(A^%ί)^)\4+ί) cz R, ^R'0®oc°0. Finally, set

Then, by Figure 4 we see that ΛΊlα? and Af̂ 'o/ = 0 . q.e.d.

REMARK. When dim cM = l, ^4^+1,^!=^ is trivially satisfied. However, when

dim c M>2, A,+ ί φi = 0 is far from trivial since there is no assurance that rank V(φ1) = 2.

When we prove Aj+Uφί = O, we fully used the fact that rank ]mAf^hViφ)=ϊ. On the
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other hand, there is no longer assurance that rank Im A^Q)){φi)*V(φi) = 1. Therefore, when

we repeat this procedure, we again encounter difficulty at the next step. However, we

can prove the following:

PROPOSITION 3.1. Set φo = φ- For i=0, 1, . . . , if ψi has d'-ίsotropy order r + i,

A^r^iφi)tV{ψi) is holomorphic and A^+iφ. = 0, then define φi+1 from φt by the forward

replacement ofcn^, where CCQ = Im Afγ^){φi)'V{φύ c Ker Ar+Uφ. and rank αj) = rank K(φf) — 1.

Then, either φt +1isapluriharmonic map into CPn~x or,φi+1 has d'-isotropy order r + / + 1

and has the following properties:

(1) y 4 ^ Γ

( J )

I + 1 ) ( ^ + i) ^ ( ^ + i) is h o l o m o r p h i c a n d A ^ + i + ίφi + ί = 0.

( 2 ) Set(x\)

+1=JmAfl%i+i)(φi + lhViφi + ί)^KQrAr+i + Uφi + ί and set ΰL\ = G'φ.{u}0). Then,

rank αj)+1 = rank V{φi + J — 1 and the Hermitian orthogonal projection Pi+ί: OCQ+ X -> u\ is

a holomorphic isomorphism.

(3) Gir+s)(φi + 1)cz R j . j φ α o " 1 ( 1 < 5 < Ϊ + 1).

(4) Set *i

J

+1 = Gφ»i + i(aί0

+1)forj=l,...9r + i + 2. Then, α ^ J c z ^ . , ( l < s < i + l )

(5) &/K;.+ 1 = ( (

= 0.

PROOF. For i = 0, Proposition 3.1 holds by Lemma 3.1. Assume that Proposition

3.1 is true for 0<ΐ<fc and φi + ί (0<i<k) is not a map into CPn~ι, so that each φί+1

(0<ί<k) has the properties (l)-(5) Then, we may define φk + 2 from φk + ί by the

forward replacement of oco+1. If α ί + 1 = 0, then rank V(φk + 2)=1 by (2) for φk + 1, and

φk + 2 is a pluriharmonic map into CPn~x. Hence, we may assume that oc\+ λ # 0 . Now, we

draw the diagram for φi+1(O<i<k). Set f0

+ x = 7(φ£ + x)θα[>+ x and y}+ x = G^fa + 1)θ

OL)+1 for y = l , . . . , r - f ί + 1 . By the properties (l)-(5) for φ ί + 1 , we have a diagram as

in Figure 6. In particular, when i = k, we have a holomorphic circuit

fc+l
α

fe+l fc+1 k
? 7θ 5 / I J 5 7r+ fc+l? α 0

which is nilpotent. Since rankyo+ 1 = 1 by (2) for φk+1, and AJIQ)^^ (0<j<r + k) and

4<yϊ,o)+lffl*+1 are all surjective, we obtain i ^ V ^ ' ^ O . Consequently, it follows from

Figure 6 that

FIGURE 6.
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(3.2) F( f t + 2) = / 0

+ 1 θ < ' , G"\φk+2) = y) + ϊ®cήX\ (ί<j<r + k+ί),

Therefore, φk + 2 has d'-isotropy order r + k + 2. By (3) and (4) for φk + x and the definition

of R's we obtain

Set Rk + 2 = V{φi+2)Q{®r.+

=\+2 G(3\φk + 2)). W e h a v e a diagram as in Figure. 7.

( l<s<fc),

which, together with (3.2), yields

(3.3) & r + ) 1

r.+

=\+2

By Figure 7 and Lemma ^2.3, we see that A$r^+2){φ*+2)>V(φ*+2) is holomorphic. Set

α ^ ^ I m ^ o V " ^ - 2 ^ - ^ and α* + 2 = G ^ + 2 ( > 0

+ 2 ) for; = l , . . . , r + k + 2. Define an

End(K(φk+2))-valued holomorphic differential Λr+k+2i(Pk+2 as before. Then, this is

nilpotent. Therefore, rank α $ + 2 < rank V(φk+2)-L Let Pk+2 : Gir+k+2)(φk + 2)-+ctk

0

+1

and Pfc + 2 α o + 2 - * α i + 1 b e t h e Hermitian orthogonal projections. It follows from the

s u r j e c t i v i t y o f ^ V 1 ' ^ " and the fact that G ( r + k + 1 ) ( φ k + 2 ) = 7 Ϊ : k

1

+ 1 θ α ϊ : k

1

+ 2 ( s e e F i g u r e

6 and (3.2)) that Pk+2 is surjective. Since (Rk + 1 Θ α k

0

+ 1 ) ± α ΐ + \ G ( Γ + f c + 2 ) ( φ k + 2 ) ^R'k+1®

αo + 1 and Λ^{tC^+1=0 by Figure 6 for i = k, we obtain

(3.4) p k + 2 o^; 0 v + 2 ^^^

where t; e C°°(G(r+k+2)((pk + 2)), which, together with the surjectivity of Pk+2 and >4J$fo)fβϊ+ \

implies that P k + 2 is surjective. Therefore, we have

rank ak

0

+ 2 > rank oc\+1= rank V(φk + 2) - rank y^+ x = rank K(φk + 2) - 1 ,

where the last equality follows from (2) for φk + ί. Consequently, we see that

rank ock

0

+2 = rank oc\+1 = rank F ( φ k + 2 ) - l and Pk+2 is an isomorphism.

Now, we show that A2

+k+2,φk+2 = 0. By (3.3) we have

(3.5) α ^ c z G ^ ^ + ^ c z ^ Θ α ^ 1 (l<s</c + 2).

First, we must show that α^ 2 aR's_ί (l<s<fe + 2). Let ps: oίίί^αS"1, 4s: α ϊ ί 2 -

and τs: oiti+i^ofi'1 (l<s<fe-f 1) be the Hermitian orthogonal
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projections. Take any v e C°°(α*+S

2)'. By (3.5), we may set v = ps(v) + qs(v). For 1 < s < k + 1 ,

we have

U:i/^>(v) = Affoi*' \ps(v)) + A^o^~ \qs(v)) = A(QaΓ
(3.6)

where we have used the facts (R's-ι Θ α o " 1 ) ! ^ " 1 ( s e e Figure 6) and (5) for φs_1.lfp
s

is surjective, then, since Aff^'1 is surjective, (3.6) implies that τs is also surjective,

where we note that OCQ^/O and α s

1 ~ 1 ^0 ( l < s < / c + l ) because neither φs-x nor φs

defines a map into CPn~ι by assumption. Since R'sλθίs

1~
1, rankOLS

O = rankα*"* and

Ps: ocs

o -• oc\~x is an isomorphism by (2), (5) for φs, the surjectivity of τ5 implies that

ps+1: oίr+s+i ~>αo i s a l s o surjective. Now, suppose that p1 is surjective. Then, each ps

( l<s</c + 2) is surjective. In particular, pk+2: a^+i+2^0ίo+ί is surjective. Note that

pF + 2 = Pk+2\aίtι+2. Then, it follows from the surjectivity of pk+2 and (3.4) that Pk+2

rTmr^ G ( r + k + 2)(VΛ+2),K(<pk + 2 ) | W—P (nrk + 2Λ «n that ϊrnί AG(r + k+ 2 ) ^ + 2),K(φic + 2) I Λ_

( i m ^ ( 1 > 0 ) |αk+2+ 2j; — r k + 2i,α0 j , s o t n a t i m ^ ( 1 0 ) \^t^+2) —

(xk

0

+2, which contradicts the nilpotency of Ar+k+2t<Pk+2. Therefore, we have proved that

p1 cannot be surjective, which, together with the fact rankαo=l , implies that p ^ O .

For any fixed s (1 <s<k+1), if p s = 0, then by (3.6) and the surjectivity of >4jf;oy
fl*ΐ + 1

for 1 < s < k H-1, we see that τs = 0, where we note that if aζ+s

2

+ ί = 0 then τs = 0 is trivially

satisfied. Since Ps is an isomorphism, it follows from τ s = 0 that ps+1 =0. Thus, we have

proved that ps = 0 (l<5<fe + 2), which, together with (3.5), yields
(3.7)

Moreover, the fact pk + 2 = 0, the isomorphicity of Pk+2 and (3.4) imply that
k + 2

α

Finally, set

and set

Then, by Figure 6 for i = /c, we see that fl

Now, we have the following:

and i4f1

ί;5)

2 fl*+2 = q.e.d.

THEOREM 3.1. Let φ: M\Sφ^G2(Cn) be a pluriharmonic map. Assume that φ

has finite d'-isotropy order r. Then, there is a sequence {φJfLo of pluriharmonic maps

such that

(1) φo = φ, (2) φN:M\SφN^CPn-\ (3) for i = 0, 1, . . . , N-1, each Ψi has

d'-isotropy order r + i, and φi+1 is obtained from φt by the forward replacement of

Im AG£o}

ιHφi)'V(φi\ which is a holomorphic subbundle ofV(φ^ contained in Keτ(Λf{t0) ° Afit0)).

PROOF. Let N be any positive integer such that each φt (0<i<N) is not a map

into CPn~1. Then, by Proposition 3.1 we see that φN has d'-isotropy order r + N.

However, this is impossible because the d'-isotropy order r + N must be less than n.
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Therefore, there exists a positive integer TV such that φN is a pluriharmonic map from

M\SφN into CPn~1, which, together with Proposition 3.1, yields the assertions (l)-(3)

of Theorem 3.1. q.e.d.

4. A construction of pluriharmonic maps from rational maps. In this section, we

give the procedures inverse to those in Theorems 2.1 and 3.1. For this purpose, we

review the following propositions which are higher dimensional versions of Proposition

2.3 and the following Remark and Theorem 4.1 of [B-W], respectively.

PROPOSITION 4.1 (cf. [O-U2]). Let φ: M^Gk(Cn) be a pluriharmonic map from

a complex manifold. Let α a KQr(Afi0)o Afx>0)) be a holomorphic subbundle of V(φ) and

let φ be defined from φ by the forward replacement of a. Then, G'φ(θL) is an anti-holomorphic

subbundle of V(φ), G'φ(oc) cnKer(AfQΛ)o Af01)) and, y Ker^4ft n ) = 0, then φ is obtained

from φ by the backward replacement of G'φ(oc).

PROPOSITION 4.2 (cf. [O-U2]). Let φ: M^Gk(Cn) be a pluriharmonic map from

a complex manifold. Assume that KerAft n )τ^0. Then, there exists a pluriharmonic

map φ: M\Sψ-+Gt(Cn) for some 0<t<k—l and a non-zero anti-holomorphic sub-

bundle β of (V(φ)®Gf(φ))± such that V(φ)=V(φ)®β over M\SΦ. Conversely,

given a pluriharmonic map φ: M -> Gt(Cn) and a non-zero anti-holomorphic subbundle

β of {V(Ψ)®G'(Ψ))± t n e n Ψ defined by V(φ)=V(φ)®β gives a pluriharmonic map φ:

M\ Sφ-> Gk{Cn) with Ker AfU0)Φ0, where k=t + rankβ.

Recall that we called the procedure V(φ) -> V(φ) 0 β in Proposition 4.2 the backward

extension. We remark that if we reverse the orientation of M we may use the concepts

of d"-isotropy order and the backward replacement in place of those of δ'-isotropy

order and the forward replacement, respectively. For example, given a pluriharmonic

map φ and a non-zero holomorphic subbundle β of(V(φ)®Gff(φ))1, we can produce a

new pluriharmonic map φ with K e r ^ n υ # 0 by V(φ) = V(φ)0β, and called this

procedure the forward extension (cf. Section 2).

First of all, we treat the case of infinite isotropy order.

PROPOSITION 4.3. Let φ: M\Sφ^>Gk(Cn) be any non-holomorphic pluriharmonic

map with infinite d"-isotropy order, where M is a complex manifold. Then, there is a unique

sequence {φι}f=0 of pluriharmonic maps such that

(1) φN = φ, (2) φ°: M\Sφ0^>Gt(Cn) is a pluriharmonic map for some teN, (3)

for i = 0, 1, ...,N-1, K e r ^ O ) = 0, and each φi+1 is obtained from φι by V(φi + 1) =

G'iφ1)®^, where αf is a holomorphic subbundle of(G'(φi)®V(φi))±.

RAMARK. (1) Since G"(G\φi))=V{φι) by the condition KerAfi>0) = 0, the pro-

cedure G'iφ*)^ V(φi + ί) is the forward extension.

(2) A similar result where M is a Riemann surface is already proved in [Wdl].

PROOF. Since G (" s )(φ) = 0 for some seN, set V(φi) = G(-s+ί+i)(φ) for i = 0,1,...,
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s - 1 . Since G ' ( G ( - β + 1 + i ) ( φ ) ) c : G ( - β + 2 + i)(φ), we have GV)<= * V + 1)- Set α' =

)'^, then by (1.2) and Proposition 4.2 we see that V(φi + 1) = Gf{φi)®ai and

α£ is a holomorphic subbundle of (G'(φi)ΘG"(G'(φi)))-L. Note that the condition

KerA$tO) = 0 is equivalent to the surjectivity of the map A^^φi \ V(φi+1)-> Viφ1) (cf.

(1.2)). Now, N = s—1 and the existence is established. For the uniqueness, define the

sequence {φι}f=0 as in (3), where φ° is as in (2). We show that each α* is uniquely

determined by the condition (1). Suppose that V(φi)(ψG{~N+i\φ) for some 1 <i<N~ 1.

Set βi = G(-N+i\φ)ΘV(φ% Since, V(φi+ί) is a holomorphic subbundle of V{φY,

Afo~iΓi + ίHφ)fβi i s surjective, and KeτAfiO) = 0, it follows that V(φi+1) cannot have

G{~N+i + ί)(φ) as a direct factor and V(φi + 1)c:Gi~N + i+1\φ)φβ\ Thus, either

V{φi + 1)φG{~N+i + 1\φ) or V{φi+1) has a non-trivial projection into β\ The former case

may be treated in the same way, and the latter one yields φNφφ because Ker^f/O) = 0

and K e r ^ l f i o j ^ ^ ^ O for any 0 < ; < i V - l . Therefore, we have φNφφ. Next, suppose

that V(φί)ψGi-N + i)(φ) for some l < ί < J V - l . If F(φ') contains also G(-N+i+1\φ), then

G{~N+i)(φ) cz KerXJΪ f0), which is a contradiction. Thus, Viφ1) has a proper holomorphic

subbundle of G(~N+i + 1)(φ) as a direct factor, hence, again, we have φNφφ. Finally,

suppose that Gf(φi~ί)^G(~N+i)(φ) and that α1'"1 has a non-trivial projection into both

of G{~N + i+ί)(φ) and βι for some \<i<N— 1. This case also leads to the conclusion

q.e.d.

THEOREM 4.1. Let φ: M\Sφ^CPn~1 be a pluriharmonic map which is not

±-holomorphic, where M is a compact complex manifold with c 1(M)>0. Then, there is

a unique sequence {V}f=0 (N<n— 1) of pluriharmonic maps into CPn~1 such that

(1) φN = φy (2) φ°: M\Sφo^CPn~1 is a non-constant holomorphic map with

rankcd<p° < 1, that is, a rational mapf: M -> CPn~1 with rank c δ/< 1, (3) for / = 0 ,1 , . . . ,

JV-1, each φi+1 is obtained from φι by V(φi+1) = G'{φi).

PROOF. This follows from Theorem 2.1 and Proposition 4.3. q.e.d.

For the case of finite isotropy order, we have the following:

THEOREM 4.2. Let φ: M\Sφ -> G2{Cn) be any pluriharmonic map with finite

d'-isotropy order, where M is a compact complex manifold with c 1(M)>0. Then, there

is a sequence {φι}f=o of pluriharmonic maps such that

(1) φN = φ, (2) φ°: M\S < p 0 ->CP' I ~ 1 , and φ1 is obtained from φ° by the backward

extension ofβ°, which is so chosen that ΊmA^^Viφί) = β° for some reN, and that ifφ°

is non-holomorphic then rankjβ° = l, (3) for i = l , . . . , N — 1 , each φi+1 has ff-isotropy

qrder r — i, and φi + 1 is obtained from φi by the backward replacement of tf and the

backward extension of β\ where a1 and βι are so chosen that rank α' = rank V(φ1)— 1 and

the Hermitian orthogonal projection Pim. I m ^ Ό y " 0 ^ ' ^ 1 ^ ^ is a holomorphic iso-

morphism and Im A^0)

iHφi + ̂ V{φi + i) = Gf^) ® β\

PROOF. This follows from Theorem 3.1 and Propositions 4.1, 4.2. q.e.d.
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The uniqueness for the choice of β* may be expected if we assume that

Ker(v4^ O) |g i) = 0. However, in general, it seems to be difficult to determine <xι uniquely.

5. Examples of pluriharmonic maps with finite d'-isotropy order. In this section,

we give examples of pluriharmonic maps with θ'-isotropy order 1 or 2, which are maps

of CP2 into complex Grassmann manifolds.

Let [Co, ( i , ίϊ\ be a homogeneous coordinate system for CP2. In an open set Uo

where Co Φ 0, set zt = Ci/Co, ^2 = C2/Co

EXAMPLE 1. Let φ0: CP2 3 [1, zx,z2~\ -• [1, y/2zl9 Jϊz2, zf, Jϊz1z2, z 2] e CP5 be

the second Veronese embedding. A line bundle V(φ0) is locally spanned by

ίo(*i> z2) = (l9 y/ΪZi, Jϊz2, z2

u y/2z1z2, z\),

which extends to a global meromorphic section of V(φ0). Using the expression for ξ0,

we find that V(φ1) = ]mAf^0) is locally spanned by ξ\ and ξj, where

^ = ( - 2 * ! , 7 2 ( 1 - | * i I2+ 1*212), - 2 ^ 2 ^ , 2 2 ^ 1 +1 z21
2),

2212|),

+ | z 1 | 2 - | z 2 | 2 ) , - 2 z 2 z 2 ,

Again, using the expressions for ξ\ and ξ\, we find that V(φ2) = ]mA^0) is locally

spanned by ξ\, ξ\ and ξ\, where

\ = (2zl -Zjϊzάl +1 z2 |
2) 2/2z-2z2 2(1 +1 z2 |

2 ) 2 - 2 ^ 2 7 ^ ( 1 +1 z12) 2z"2z2ξ\ = (2zl -Zjϊzάl +1 z2 |
2), 2^/2z-2z2, 2(1 +1 z2 |

2 ) 2 , - 2 ^ 2 7 ^ ( 1 +1 z21
2), 2z"2z2),

ξ\ = (2zl 2 ^ 2 2^1, - 2 ^ 2 22(1 +1 zx | 2 ), 2z2z"2, - 2 ^ 2 2 ^ ( 1 +12X | 2 ), 2(1 +1 zx | 2 ) 2 ) .

Then, we see that 4̂fi2,0) = 0, that is, φ2 is an anti-holomorphic map into G3(C6). Since

V(φ2) is an anti-holomoφhic subbundle of (V(φ0) 0 GX^Q)) 1 . the map ^r: C P 2 -+ G4(C6)

defined by V(φ)= K(φ0)© K(φ2) is pluriharmonic by Proposition 4.2. Moreover, ^ has

S'-isotropy order 1. For the purpose of producing a pluriharmonic map into G2(C6)

with δ'-isotropy order 1, we now look for an anti-holomorphic line subbundle of V(φ2).

Let β° be spanned by

ι/ = (0,0,0,-21,^/22^2,-2?) .

In fact,
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Since δCa>(V{φ2))cz Cx'(V(φ2)) and δη = O, we see that β° is an anti-holomorphic line

subbundle of V(φ2). Define φ1 by l/(<p1)= V(φo)φβ°. Then, φι is a pluriharmonic map

of CP2\Sφί into G2(C6) with d'-isotropy order 1, where Sφi consists of the isolated

point z 1 = 2 2 = 0.

EXAMPLE 2. Let

(1,

be the third Veronese embedding. A line bundle V{φ0) is locally spanned by

ξo(zu Z2) = (l, y3"z l 5 JΊ>Z2, JΊ>z\, y/Jzl, ~J~f)ZxZ2, z\,

V(φ1)=JmAf?0) is locally spanned by ξ\ and ξ\, where

-21 Zl | 2 +1 z21
2), 3z2(l +1 z21

2),

V(φ2) = Im Λfi',0) is locally spanned by ξ\, ξ\ and ξ|> where

ξ2=(6z"2, - 2 ^ / 3 z j (2- | Z l | 2 + 21 z21
2), 6^/1 zfz2,

+1 z212)(1-212 l | 2 +1 z21
2), 6y iz- 2 z 2 , -2/6z .z-^-1 Z l | 2 + 21 z21

2),

3 z2

2z,(2 -1 zx |
2 + 21 z21

2), 62-fz|),

/ϊ.iί + lz, | 2 - 2 | z 2 | 2 ) ,

6z2zf(l +1

ξ\ = (6zi 6^3 z2

2zu - 2^3z2(2 + 2 \ z, \2 -1 z21
2),



CLASSIFICATION OF PLURIHARMONIC MAPS 385

V(φ3)=]mAf?0) is locally spanned by £3, ξ\, ξ\ and ξ3, where

(l + | z 2 | 2 ) , -6^/3z\z2, -6^2z,(\ + \z2\
2

z21
2), 6(1 +1 z21

2)3, -βyfiz^l + \ z21
2)2,

z\z2,

2y/ϊzίz
2(2-\z1\

\2), - fφz\z\, - ^z2{\ +1 Z l |
2)2,

-6z\z\, φ

Then, we see that AflO) = 0, that is, φ3 is an anti-holomorphic map into GA(Cί0). Since
V(φ3) is an anti-holomorphic subbundle of (V(φ0) φ G'ί̂ o))-1, the map ̂ : CP2 -»• GS(C10)
defined by V(ψ) = V(φ0) φ V(φ3) is pluriharmonic and has d'-isotropy order 2. To give
a pluriharmonic map into G2(C10) with d'-isotropy order 2, we now look for an
anti-holomorphic line subbundle of V(φ3).

Let β° be spanned by

η° = (000000 if -yiz-iZ"2 v ^ z 2 ^ -z?η° = (0,0,0,0,0,0, if, -yiz-iZ"2, v ^ z 2 ^ , -z?)

In fact, >ίo = (l/36)δ2a2δ2^= -{\l\2)d2d2diξ
2

3 = {\l\2)d2dιdίξ\=-{\β6)dίdίdiξ
A

3. Since
5C°°(K((p3)) c C^ίFίφj)) and βf/°=O, we see that /3° is an anti-holomorphic line
subbundle. Define φ1 by V(φi)=V(φ0)φβ°. Then, φ 1 is a pluriharmonic map of
CP2\Sφί into G2(C1 0) with δ'-isotropy order 2.

Next, we construct a pluriharmonic map φ2 which has δ'-isotropy order 1 by the
backward replacement of φ1. Since β° is a holomorphic and anti-holomorphic subbundle
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of V(φx), we may take oc1=β°. A simple computation shows that GJ^α1) is locally

spanned by

ί/1 = (0, 0,0, 0, 0,0, 3 I z J 2 z i - y ^ ̂ ^

Define φ2 by V(φ2)=V(φo)@Gφί(oc1). Then, φ2 is a pluriharmonic map of CP2\Sφ2

into G2(C10) with d'-isotropy order 1, where Sφ2 = Sφι.

6. Pluriharmonic maps into other complex Grassmann manifolds. Let M be

compact complex manifold with c1(M)>0. The method and idea used to classify all

pluriharmonic maps from M into G2(Cn) are also partially applicable to the case where

the target is G3(Cn) or G^(Cn). There are many different cases to analyze, but the essence

of the analysis is just the same as in Section 3. Therefore, for the method to increase

the isotropy order of a given pluriharmonic map, we present only the algorithm.

LEMMA 6.1. Let φ: M\Sφ -> G3(Cn) be a pluriharmonic map. Assume that φ has

&-isotropy order r. Then, A,φ = 0.

( I ) IfAlφψ0, set oc° = ]mA2

t(p. Then, α° c z K e r ^ ^ o ^ 0 ) ) , and define φ1 from

φ by the forward replacement ofoc0. Then, φ1 has d'-isotropy order r and satisfies A2

φl = 0.

Set β° = Im Ar^ andδ0 = Im Af^β0)^φl)θβ0. Then, β°®δ°cz Keτ(A$% ° A?^). Define

φ^from φ1 by the forward replacement of β° ®δ°. Then, φx has d'-isotropy order > r + 1

and satisfies A,+ l φ ί = 0.

(II) If A2

fφ = 0, set oc° = ]mAr,φ and δo = JmΛfl:o)HaP)tViφ)θβP' Then> α ° ?

 δ ° c

K e r ί ^ Q ) o Aft,0)), rank α° = 1, 2, and rank δ° = 0,\.

(II-1) 7/*rankα° = 2, then δ° = 0 and define φx from φ by the forward replacement

ofoc0.

(II-2) 7/*rankα° = 1 and <5° = 0, then define φx from φ by the forward replacement

of a0.

(II-3) If rank α° = rank <5°=1, then define φ1from φ by the forward replacement

ofa°®δ°.
Then, in any case, φx has d'-isotropy order > r + l and satisfies A?+ίφί=0.

Moreover, for each φ t in (I), (II), the following are true:

(1) If Ar+ ίφί = 0 , then φ1 is a pluriharmonic map into CPn~1 or G2(Cn) (the latter

case occurs only for (Π-2)).

(2) //Λ?+i.φi = 0 α ^ Λ + i . , ^

Then, μ1, δ1 cz Keτ(AflO)<> Aft\0)) andmnkδ1=0, 1 (the latter case occurs only for (Π-2)).

Define φ2from φγ by the forward replacement of μ1 φδ1. Then, φ2 has d'-isotropy order

> r + 2 and satisfies rank JmAr+2φ2 = ra.nk V(φ2) — m, where m = l , 2 (the latter case

occurs only for (Π-2)).

(3) IfΛ2

+Uφiψ0, set α1 = hnA2

+Uφι. Then, α1 c K e r ( ^ 0 ) o ^ 0 ) ) 5 and define φ\

from φx by the forward replacement ofoc1. Then, φ\ has d'-isotropy order rΛ-1 and satisfies

^i andδ1 =]mAf^)

2)^v^QP1. Then, β1, δ1
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A^0)). Define φ2from φ\ by the forward replacement ofβι®δι. Then, φ2 has d'-isotropy

order > r + 2 and satisfies rank ]mAr+2φ2 = rank V(φ2) — 1.

Using Lemma 6.1, we may prove the following:

PROPOSITION 6.1. Let φ: M\Sφ->G3(Cn) be a pluriharmonic map. Assume that

φ has finite d'-isotropy order and n< 15. Then, there is a sequence {φJfLo of pluriharmonic

maps such that

(1) φo = φ, (2) φN: M\SφN^CPn-χ or G 2 ( C ) , (3) for ι = 0, 1, . . . , i V - l , each Ψi

has finite d'-isotropy order, and φi+1 is obtained from φ{ by the forward replacement of

at, where αι is a holomorphic subbundle ofV(φ^ contained in Ker(Aflt0)° Aft 0 ) ) .

PROOF. Construct φ2 from φ, using Lemma 6.1. Let r be the d'-isotropy order of

φ2. Then, r > 3 . Set ao = JmArφ2, αi = G^)

2(α0) for i = l , . . . , r and yo= V(φ2)Q(x0, y~

^ιKψi)θΛf for ι = l , . . . ,r . By Lemma 6.1, we have rankyo = m and rankα o =

rank V(φ2) — m, where m=l,2. If αo = 0, then φ 2 is a pluriharmonic map into CP*1'1 or

G2(CΠ), hence we may assume that α o # 0 . Set ^ = K(^i)e(®^ = 1 G 0 ) ((/) 2 )) . We have

a diagram as in Figure 8.

We have two possibilities: (1) αf = 0 for some 1 < i < r, (2) any α, (1 < ί < r) is non-zero.

(1) Set V(φ) = (V(φ2)θ(x0)®a1. Then, by Figure 8 we see that either φ is a

pluriharmonic map into CP"'1 or G2(Cn), or φ has d'-isotropy order r + 1 and

rank Imi4{ic

i

Γ

0

+

)

1)W W) = rank 7(φ)-m, where m= 1, 2.

(2) Since n < 15, one of F(φ2)> G(ι)(φ2) (1 < i < r) has rank < 3 and d'-isotropy order

r. Hence, by Lemma 6.1, either we have a pluriharmonic map into CP"'1 or G2(Cn),

or we have a pluriharmonic map φ which has d'-isotropy order r + 2 and satisfies

rank ]τn. Arή.2iφ = r a n ^ V(Φ)~m> where m = 1, 2.

Since the d'-isotropy order cannot be so large, repeating this procedure, we see that

φ is reduced to a pluriharmonic map into CP"'1 or G2(Cn), and each φt in the sequence

has the desired properties by Proposition 2.3. q.e.d.

Next, we present an algorithm to increase the isotropy order of a given pluri-

harmonic map into G^C"). To state the algorithm, we need the following:

PROPOSITION 6.2 ([cf. O-U2]). Let φ: M\Sφ -• Gk(Cn) be a pluriharmonic map
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with d'-isotropy order r. Assume that A^;φ = 0 and rank Im Ar φ = 1. Then, there is a
holomorphίc subbundle τ of V(φ) with τ a Keτ(Afit0)<>Afίt0)) such that φx defined from φ
by the forward replacement of τ has d'-isotropy order > r + 1.

The method is to construct a pluriharmonic map φ satisfying the conditions in
Proposition 6.2 from a given pluriharmonic map φ.

LEMMA 6.2. Let φ: M\Sφ -> G^(Cn) be a pluriharmonic map. Assume that φ has
d'-isotropy order r. Then A^φ = 0. There are three possibilities: (I) A?φφ0, (II) Afφ = 0

In each case, we use the following notation for simplicity:

^ — ̂ (1,0) °Λ(l,0) ° oΛ(l,0) '

(I) Set α° = Im/lΓ

3

ί<p. Then, a0 cKeτ(A$t0)oAflt0))9 and define φ1 from φ by the
forward replacement of α°. Then, φ1 has d'-isotropy order r and satisfies Afφί=O. Set
β° = JmAlφL Then, β° cKer(A$%oA$t0)), and define φ2 from φ1 by the forward
replacement ofβ°. Then, φ2 has d'-isotropy order r and satisfies A2

f(p2 = 0. Set μ° = Im Arφ2.
Then, μ ^ K e r ^ J ^ o ^ 2 ^ ) , and set tf = G$Qi°) for i = l , . / . , r + l , εo = V(φ2)θμ°,
ε^G^iφ^Qμ1 for i=l,...,r, η = JmB and v = ]m(AoB). Then, rankη = rankε°-1,
rank v = rank μ° — 1 and v a Ker B. Define φ from φ2 by the forward replacement of v.
Then, φ satisfies the conditions in Proposition 6.2.

(II) Set α° = Im A^φ, β° = hn Ar,φ Q α° and γ° = V(φ) θ (α° φ β°). Then, there are
three possibilities: (IM)'rankα° = rankj8° = l, (Π-2) rankα° = ranky° = 1, (Π-3) rank

(II-l) (1) If Af^Q^^0^0 = 0, define φ from φ by the forward replacement of a0.
Then φ satisfies the conditions in Proposition 6.2.

(2) Otherwise, set (50 = Imy4(

G

1̂ o

+

)

1)(a°)'yO and define φ1 from φ by the forward
replacement of a0. Then φ1 has d'-isotropy order r and satisfies A2

φi=0. Set

μ° = ImAr,φi, tf = G$Qi°)for ί = l r + 1 , ε°= V(φι)θμ°, ε ^ G ^ φ 1 ) © ^
for Ϊ = 1, ..., r, η = hnB and v = Im(^o5). Then rankη = rankε° — 1, rankv = l
and v c: Ker B. Define φ from φ1 by the forward replacement of v. Then φ
satisfies the conditions in Proposition 6.2.

(Π-2) Define φ1 from φ by the forward replacement of a0. Then, φ1 has d'-isotropy
order r and satisfies A2

φl=0. Set μ° = JmAriφl, μ^Gftiμ0) for i = l , . . . , r + l ,
εo=V(φ1)θμ°, ε* = G^φ1)θμ* for i= 1,..., r and η = ]mB. Then, rankη = rankε°-1
and(AoB)2 = 0.

(1) Ifηa Ken A, set v = μ°@η. Then, v c Ker(i4(

(f f ^ ° A$f0)), rank v = rank V(φι) -
1, and φx defined from φ1 by the forward replacement ofv has d'-isotropy order
> r +1 and satisfies rank hnAr+ί φi= rank V(φι) — 1.

(2) If η a Ker A, set v = hn(A ° B). Then, rank v = 1 and v c Ker B. Define φ from
φ1 by the forward replacement ofv. Then, φ satisfies the conditions in Proposi-
tion 6.2.
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(Π-3) Define φ from φ by the forward replacement of α°. Then, φ satisfies the

conditions in Proposition 6.2.

(Ill) Set μ° = JmArfφ. Then, μ° c Keτ Artψ. Set μ^G^μ0) for i = l r + 1 ,

ε° = V(φ) θ μ° and ει = Giι\φ) θ μι for ί = 1,..., r. Then there are three possibilities:

(ΠI-1) rankμ°= 1, (III-2) rankμ° = 2, (ΠI-3) rankμ° = 3.

(IΠ-1) In this case, φ itself satisfies the conditions in Proposition 6.2. Set φ = φ.

(IΠ-2) We have rank Im Afx^
ε° = 0, 1.

(1) If Afc*o\'ε° = 0, then define φ^from φ by the forward replacement of μ°. Then

φx has d'-isotropy order >r+1 and satisfies rank I m ^ 4 r + 1 < p i = rank V{φ^) — m,

where m= 1, 2.

(2) Otherwise, setη = ]m A^ε°. Then rank η = 1 and (A o B)2 = 0. // A o 5 = 0, «?ί

v = μ ° θ ^ TΆ̂ w vcKer(y4f1

L

(0)θi4f1>0)), rankv = rank K(φ)—1, and φx defined

from φ by the forward replacement ofv has d'-isotropy order > r + 1 and satisfies

rank ImΛr + 1><P1 = r a n k F ^ - l . IfAoβψO, set v = lm(AoB). Then rankv=\

and v c Ker B. Define φ from φ by the forward replacement of v. Then, φ

satisfies the conditions in Proposition 6.2.

(III-3) We have Af[*0\'ε0 = 0. Define φίfrom φ by the forward replacement of μ°.

Then φγ has d'-isotropy order > r + l and satisfies rank Im Ar+λ φi = rank V(φ 1) — 1.

Moreover, for each φ, there is a holomorphic subbundle τ of φ with τ a

Ker(Afit0)°Aflt0)) and rank τ = rank V(φ) — m such that φx defined from φ by the for-

ward replacement of τ has d'-isotropy order > r + l and satisfies rank lmAr+^φι =

rank V(φί) — m, where m=l,2,3.

Using Lemma 6.2, we obtain:

PROPOSITION 6.3. Let φ: M\Sφ^G4(Cn) be a pluriharmonic map. Assume that

φ has finite d'-isotropy order andn<\4. Then, there is a sequence {<P/}f=0 of pluriharmonic

maps such that

(1) φo = φ, (2) φN: M\SφN^Gm(Cn) with m=l,2,3, (3) for i = 0, 1,..., N-1,

each ψι has finite d'-isotropy order, andφi+ x is obtained from φi by the forward replacement

of cc\ where ocι is a holomorphic subbundle of V(ψι) contained in JLeτ(Af{,o)°^α,o))

This follows from the arguments similar to those of Proposition 6.1. For the inverse

procedure, we have the following:

THEOREM 6.1. Let φ: M\Sφ->Gk(Cn) be a pluriharmonic map with finite

d'-isotropy order, where M is a compact complex manifold with c1(M)>0. Assume that

k = 3 (resp. k = 4) and n<15 (resp. n<\4). Then, there is a sequence {φι}f=0 of

pluriharmonic maps such that

(1) φN = φ, (2) φ° : M\Sφ0 -> Gt(Cn) with 1 < t < k -1, an d φ1 is obtained from φ°

by the backward extension so that φ1 has finite d'-isotropy order, (3) for i= 1,..., N— 1,

each φi+1 has finite d'-isotropy order, and φi+1 is obtained from φ* by the backward

replacement and the backward extension.
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REMARK. If we do not require the result such as the one in (2) of Theorem 6.1,
the restriction on n may be relaxed to the condition that n<20 for fc = 3 and n< 15 for
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