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Introduction

Submanifolds with parallel second fundamental form (which are simply
called parallel submanifolds) have been studied by many differential
geometers. In particular, parallel Kaehler submanifolds in a complex
projective space are completely determined (see [1]).

In this paper, we give some characterizations of Einstein parallel
Kaehler submanifolds in a complex projective space.

Let $X:M\rightarrow E^{N}$ be an isometric immersion of an n-dimensional compact
Riemannian manifold into an N-dimensional Euclidean space. We denote
by $\Delta$ and $Spec(M)=\{0<\lambda_{1}<\lambda_{2}<\cdots\}$ , the Laplacian acting on differentiable
functions of $M$ and the spectrum of $\Delta$ , respectively. Then, $X$ can be
decomposed as $X=X_{0}+\sum_{keN}X_{k}$ , where $X_{k}$ is a k-th eigenfunction of $\Delta$

of $M,$ $X_{0}$ is a constant mapping, and the addition is convergent com-
ponentwise for the $L^{2}$-topology on $C^{\infty}(M)$ . We say that the immersion
is of order $\{l\}$ (or mono-order) if $X=X_{0}+X_{\iota},$ $l\in N,$ $X_{l}\neq 0$ , and of order
$\{k, l\}$ (or bi-order) if $X=X_{0}+X_{k}+X_{l},$ $k,$ $l\in N,$ $l>k,$ $X_{k},$ $X_{l}\neq 0,$ $\cdots$ (see [4]).

Let $F:CP^{m}\rightarrow E^{N}$ be the first standard imbedding of an m-dimensional
complex projective space of constant holomorphic sectional curvature 1
into an N-dimensional Euclidean space, and $i:M^{n}\rightarrow CP^{M}$ be a Kaehler
immersion of an n-dimensional compact Kaehler manifold. We consider
$\phi=F\circ i:M^{n}\rightarrow E^{N}$ . Then, $\phi$ is mono-order if and only if $M$ is totally geodesic
(See [3].), and totally geodesic Kaehler submanifolds are of order 1. Let
$A$ be the shape operator of the immersion $i$ , and define the tensor $T$ by

$T(\xi, \eta)=trA_{\xi}A_{\eta}$ for $\xi,$ $\eta\in NM$ ,

where $NM$ is the normal bundle of $M$. Then $T$ is a symmetric bilinear
mapping from $NM\times NM$ into $R$ . A. Ros [3] has proved that $M$ is bi-order
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if and only if $M$ is an Einstein Kaehler submanifold with $T=kg|_{NK\times NX}$ ,
where $k$ is some real number and $g$ is the Kaehler metric of $CP^{M}$ . With
reference to this fact, we have the following

THEOREM 1. Let $M$ be an n-dimensional compact Kaehler submanifold
fully immersed in $CP^{M}$ which is not totally geodesic. Then, the following
conditions are mutually equivalent.

(i) $M$ is an Einstein parallel submanifold,
(ii) $M$ is of order {1, 2},
(iii) $M$ is bi-order,
(iv) $M$ is an Einstein submanifold with $T=kg|_{NK\times NP}$ ,
(v) $M$ is an Einstein submanifold and $NM$ admits an Einstein

Kaehler metric.

It is already shown in [4] that Einstein parallel Kaehler submanifolds
which are not totally geodesic are of order {1, 2}. It is trivial that (ii)

implies (iii). The equivalence between (iii) and (iv) is proved by A. Ros
[3]. We will show that the condition (iv) implies (i) in \S 3. We will
explain what the condition (v) means and prove the equivalence between
(iv) and (v) in \S 2.

REMARK 1. The equivalence between (ii) and (iii) implies that there
exist no bi-order immersions other than immersions of order {1, 2}.

Throughout this paper, we use the following convention on the range
of indices:

$A,$ $B,$ $\cdots=1,$ $\cdots,$ $n,$ $n+1,$ $\cdots,$ $m$ ; $a,$ $b\cdots=1,$ $\cdots,$ $n$ ;
$\alpha,$ $\beta,$ $\cdots=n+1,$ $\cdots,$ $m$ .

The author wishes to thank Professors K. Ogiue, N. Ejiri and A. Ros
for many valuable comments and suggestions, and also thank Professor
K. Tsukada for many valuable advices, in particular, the method of using
non-negativity of $||\nabla\nabla H||^{2}$ in (3.4) is due to him. The author is also
grateful to the referee for many valuable suggestions, thanks to which
the original paper is improved.

\S 1. Preliminaries.

In this section, we give some basic formulas for Kaehler submanifolds
in $CP$“. For details, see [1] and [2]. Let $M$ be an n-dimensional Kaehler
submanifold immersed in $CP^{\prime\hslash}$ . Let $TM^{c}$ be the complexification of the
tangent bundle $TM$ of $M$. Then we have $TM^{c}=TM^{+}+TM^{-}$ (orthogonal
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sum), where the fibre $T_{p}M^{\pm}$ at $p\in M$ is the $\pm\sqrt{-1}$ eigenspace of the
complex structure tensor on $T_{p}M^{c}$ . In the same way, we have $NM^{c}=$

$NM^{+}+NM^{-}$ (orthogonal sum) for the complexification $NM^{c}$ of the normal
bundle $NM$ of the immersion. We denote by $x\rightarrow\overline{x}$ the complex conjugation,
so that $\overline{T_{p}M^{\pm}}=T_{p}M^{\mp}$ and $\overline{N_{p}M^{\pm}}=N_{p}M^{\mp}$ . We choose a local field of unitary
frames $\{e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{m}\}$ on $CP^{m}$ in such a way that, restricted to
$M,$ $e_{1},$ $\cdots,$ $e_{n}$ are tangent to $M$. With respect to the frame field on $CP^{m}$ ,
let $\{\omega^{1}, \cdots, \omega^{n}, \omega^{n+1}, \cdots, \omega^{m}\}$ be the field of dual frames. Then, the
Kaehler metric of $CP^{m}$ is given by $\sum_{A}\omega^{A}\cdot\overline{\omega}^{A}$ (in [1], the Kaehler metric
of $CP^{m}$ is given by 2 $\sum_{A}\omega^{A}\cdot\overline{\omega}^{A}$) and the structure equations of $CP^{m}$ are
given by

(1.1) $d\omega^{A}+\sum_{B}\omega_{B}^{A}\wedge\omega^{B}=0$ , $\omega_{B}^{A}+\overline{\omega}_{A}^{B}=0$ ,

(1.2) $d\omega_{B}^{A}+\sum_{C}\omega_{c}^{A}\wedge\omega_{B}^{c}=\tilde{\Omega}_{B}^{A}$ , $\tilde{\Omega}_{B}^{A}=\sum_{c,D}\tilde{R}_{Bc\overline{D}}^{A}\omega^{\sigma}\wedge\overline{\omega}^{D}$

Since $CP^{m}$ is a complex space form of constant holomorphic sectional
curvature 1, we have

(1.3) $\tilde{R}_{BC\overline{D}}^{A}=(1/4)(\delta_{B}^{A}\delta_{cD}+\delta_{c}^{A}\delta_{BD})$

Restricting these forms to $M^{n}$ , we have

(1.4) $\omega^{\alpha}=0$ ,

and the Kaehler metric $g$ of $M^{n}$ is given by $g=\sum_{a}\omega^{a}\cdot\overline{\omega}^{a}$ . Moreover we
obtain

(1.5) $\omega_{a}^{\alpha}=\sum_{b}k_{ab}^{\alpha}\omega^{b}$ , $k_{ab}^{\alpha}=k_{ba}^{\alpha}$ ,

(1.6) $d\omega^{a}+\sum_{b}\omega_{b}^{a}\wedge\omega^{b}=0$ , $\omega_{b}^{a}+\overline{\omega}_{a}^{b}=0$ ,

(1.7) $d\omega_{b}^{a}+\sum_{\iota}\omega_{c}^{a}$ A $\omega_{b}^{c}=\Omega_{b}^{a}$ , $\Omega_{b}^{a}=\sum_{c,d}R_{bc\overline{d}}^{a}\omega^{\epsilon}\wedge\overline{\omega}^{d}$ ,

(1.8) $d\omega_{\beta}^{\alpha}+\sum_{\gamma}\omega_{\gamma}^{\alpha}$ A $\omega_{\beta}^{\gamma}=\Omega_{\beta}^{\alpha}$ , $\Omega_{\beta}^{\alpha}=\sum_{0,d}R_{\beta c\overline{d}}^{\alpha}\omega^{c}\wedge\overline{\omega}^{d}$ ,

From (1.5) and (1.7), we have the equation of Gauss

(1.9) $R_{bc\overline{d}}^{a}=(1/4)(\delta_{b}^{a}\delta_{\iota d}+\delta_{c}^{a}\delta_{bd})-\sum_{\alpha}k_{bc}^{\alpha}\overline{k}_{ad}^{\alpha}$ ,

and from (1.5), (1.6) and (1.8), we have

(1.10) $R_{\beta c\overline{d}}^{a}=(1/4)\delta_{\beta}^{\alpha}\delta_{od}+\sum_{a}k_{ac}^{\beta}\overline{k}_{ad}^{\alpha}$ .
The Ricci tensor $S_{c\overline{d}}$ and the scalar curvature $\tau$ of $M^{n}$ are given by

(1.11) $S_{c\overline{d}}=(n+1)/2\delta_{ed}-2\sum_{\alpha,a}k_{ao}^{\alpha}\overline{k}_{ad}^{\alpha}$ ,
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(1.12) $\tau=n(n+1)-4\sum_{a,,d}k_{\iota d}^{\alpha}\overline{k}_{\iota d}^{\alpha}$ .
Now, we define the covariant derivatives $k_{abo}^{\alpha}$ and $k_{a\overline{bc}}^{\alpha}$ of $k_{ab}^{\alpha}$ by

$\sum_{0}k_{abo}^{\alpha}\omega^{0}+\sum_{0}k_{a\overline{b\epsilon}}^{\alpha}\overline{\omega}^{\iota}=dk_{ab}^{\alpha}-\sum_{0}k_{bo}^{\alpha}\omega_{a}^{c}-\sum_{e}k_{ac}^{\alpha}\omega_{b}^{c}+\sum_{\beta}k_{ab}^{\beta}\omega_{\beta}^{\alpha}$ .
Then we have

(1.13) $k_{abo}^{\alpha}=k_{bao}^{\alpha}=k_{aob}^{\alpha}$ , $k_{ab\overline{0}}^{\alpha}=0$ .
We can define inductively the covariant derivatives $k_{a_{1}\cdots a_{*}a_{n+1}}^{\alpha}$ and $k_{a_{1}\cdots a}^{\alpha}\overline{a}$

of $k_{a_{1}\cdots a}^{\alpha}$. for $m\geqq 2$ . It is clear that $(\overline{k}_{a_{1}\cdots a}^{a})_{b}=\overline{k}_{a_{1}\cdots a_{n}\overline{b}}^{\alpha}$ and $(\overline{k}_{a_{1}\cdots a_{*}}^{\alpha})_{\overline{b}}=\overline{k}_{a\cdots ab}^{\alpha}*n+1$

We see that $k_{a_{1}\cdots a_{*}}^{\alpha}$ is symmetric with respect to $a_{1},$ $\cdots,$ $a,$ . $1Thel*$

following formula is proved in [1]:

LEMMA 1.

(1.14) $k_{a_{1}\cdots a_{*}\overline{b}}^{\alpha}=(m-2)/4\sum k^{\alpha}\delta_{a_{r}b}$

$-\sum_{r=1}^{n-2}1/r[(m-r)]\sum_{\sigma,\beta,0}k_{ca_{a(1)}\ldots a_{\sigma(r)}}^{\alpha}k_{a_{\sigma(\prime+1)}\ldots a_{\sigma(n)}}^{\beta}\overline{k}_{cb}^{\beta}$

for $m\geqq 3$ , where the summation on $a$ is taken over all permutations of
$(1, \cdots, m)$ .

\S 2. Normal Einstein metric.

First, we state the following.

DEFINITION. We put $R_{\beta}^{\alpha}=\sum_{0}R_{\beta\iota 0}^{\alpha-}$ . Then, we call this tensor on $NM$
the normal Ricci tensor. If $R_{\beta}^{\alpha}=x\delta_{\beta}^{\alpha}$ for some real function $\lambda$ on $M$, we
say that $NM$ admits an Einstein Kaehler metric.

Let $J$ be the complex structure of $CP^{*}$ . Since $A_{J\xi}=JA_{\xi},$ $A_{\xi}J=-JA_{\epsilon}$

for any $\xi eNM$ (See [2].), we have

$T(J\xi, J\eta)=T(\xi, \eta)$ for any $\xi,$ $\eta eNM$ .
Next, we extend $T$ to the complex bilinear mapping from $NM^{c}\times NM^{c}$

into $C$. Then, we have

$T(N_{p}M^{+}, N_{p}M^{+})=0$ , $T(N_{p}M^{-}, N_{p}M^{-})=0$ for any $peM$ .
Therefore, we can see that

$T=kg|_{NK\times NH}$ if and only if $\sum_{a,b}k_{ab}^{\alpha}\overline{k}_{ab}^{\beta}=(k/2)\delta_{\alpha\beta}$ ,

and $k$ is given by $(n(n+1)-\tau)/2(m-n)$ . On the other hand, it follows
from (1.10) that
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$R_{\beta}^{\alpha}=(n/4)\delta_{\beta}^{\alpha}+\sum_{a,b}k_{ab}^{\beta}\overline{k}_{ab}^{\alpha}$ .
Thus, we have

PROPOSITION 1. Let $M$ be a Kaehler submanifold in $CP^{m}$ . Then,
the following conditions are mutually equivalent.

(i) $T=kg|_{NMxNM}$ ,
(ii) $NM$ admits an Einstein Kaehler metric.

\S 3. Proof of Theorem 1.

To complete the proof of Theorem 1, it is enough to prove the
following

PROPOSITION 2. Let $M$ be an n-dimensional Einstein Kaehler sub-
manifold in $CP^{m}$ .

If $M$ is a submanifold with $T=kg|_{NK\times NH}$ , then $M$ is a parallel sub-
manifold.

PROOF. Since $M$ is Einstein, we have $\sum_{\alpha,a}k_{a\iota}^{\alpha}\overline{k}_{ad}^{\alpha}=\{||k||^{2}/4n\}\delta_{d}$ by (1.11)
and it follows that

(3.1) $\sum_{\alpha,a}k_{abc}^{\alpha}\overline{k}_{ad}^{\alpha}=0$ (see (1.13)).

Using Lemma 1, we obtain

$k_{abc\overline{d}}^{\alpha}=(1/4)\{k_{bc}^{\alpha}\delta_{ad}+k_{ao}^{a}\delta_{bd}+k_{ab}^{\alpha}\delta_{od}\}$

$-\sum_{\beta,\ell}\{k_{ea}^{\alpha}k_{bc}^{\beta}+k_{eb}^{\alpha}k_{ca}^{\beta}+k_{ec}^{\alpha}k_{ab}^{\beta}\}\overline{k}_{ed}^{\beta}$ .
This, together with (1.13) and (3.1), implies

(3.2) $\sum_{\alpha,a,b,\iota}k_{abo}^{\alpha}(\overline{k_{abc\overline{d}}^{\alpha}})=0$ .
Then, we have

(3.3) $0=\sum_{\alpha,a,b,0,d}k_{abc\overline{d}}^{\alpha}(\overline{k_{abo\overline{d}}^{a}})+\sum_{\alpha,a,b,e,d}k_{abo}^{\alpha}(\overline{k_{abe\overline{d}d}^{\alpha}})$

$=\sum k_{aba\overline{d}}^{\alpha}(\overline{k_{abc\overline{d}}^{\alpha}})+(3/4)\sum k_{abc}^{\alpha}\overline{k}_{abc}^{\alpha}$

$-3\sum k_{abc}^{\alpha}\overline{k}_{bc}^{\beta}k_{ed}^{\beta}\overline{k}_{eda}^{\alpha}$ ,

where we have used $(1.13)+$ and (3.1). If we put $H=(k_{ab}^{\alpha})$ , $\tilde{T}=(\tilde{T}_{\alpha\overline{\beta}})=$

$(\sum_{a,b}k_{ab}^{\alpha}\overline{k}_{ab}^{\beta})$ and denote by V, $\nabla-$ and $\nabla^{\perp}$ , the $(1, 0)$-type covariant derivative,
the $(0,1)$-type covariant derivative, and the normal connection of $M$, re-
spectively, then (3.3) implies

(3.4) $3||\nabla^{\perp}\tilde{T}+\Vert^{2}=||\nabla\nabla H\Vert^{2}+(3/4)\Vert\nabla^{+}H\Vert^{2}-+$
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Since $\tilde{T}_{\alpha\overline{\beta}}=(k/2)\delta_{\alpha\beta}$ , the left hand side of (3.4) vanishes, so does the right
hand side. Since each term of the right hand side of (3.4) is non-negative,
we obtain

$\nabla H=0+$ ,

that is, the second fundamental form is parallel. Q.E.D.
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