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HARMONIC TORI IN QUATERNIONIC PROJECTIVE 3-SPACES

SEIICHI UDAGAWA

(Communicated by Peter Li)

Abstract. Burstall classified conformal non-superminimal harmonic two-tori
in spheres and complex projective spaces. In this paper, we shall classify con-
formal non-superminimal harmonic two-tori in a 2- or 3-dimensional quater-
nionic projective space, which are not always covered by primitive harmonic
two-tori of finite type.

Introduction

The harmonic two-spheres in n-dimensional quaternionic projective space HPn

are studied and classified in [Ba-W]. In contrast with the case of harmonic two-
spheres, there is a class of non-conformal harmonic maps for two-torus. For non-
conformal harmonic two-tori in compact symmetric space of rank one, a beautiful
theory is established by [B-F-P-P], which says that they are obtained by integrating
certain commuting Hamiltonian flows. They called the map of this kind a map of
finite type. However, the geometrically interesting class of harmonic maps is that of
conformal ones. The (weakly) conformal harmonic maps are, again, divided into two
subclasses, the class of superminimal ones and the class of non-superminimal ones.
The former class is well understood and it is obtained by projecting a horizontal
holomorphic map into a certain generalized flag manifold.

In [B], Burstall proved that any non-superminimal harmonic torus in a sphere or
a complex projective space is covered by a primitive harmonic map of finite type into
a certain generalized flag manifold. In the previous paper [U], the present author
generalized Burstall’s result to G2(C4) as target. Moreover, for the general complex
Grassmann manifold as target, some sufficient conditions for a given harmonic map
be of finite type are given (see [U]).

In the present paper, we treat the harmonic two-tori in quaternionic projective
space. We prove the classification theorem for non-superminimal harmonic two-tori
in HP 2 and HP 3 (Theorems 5.1 and 5.2).

1. Quaternionic projective space and harmonic sequence

Let C2n be a 2n-dimensional complex number space with the standard Hermitian
inner product 〈 , 〉 defined by 〈v, w〉 =

∑2n
i=1 viwi , where v = (v1, v2, · · · , v2n), w =

(w1, w2, · · · , w2n). Let H be the division ring of quaternions and j a unit quaternion
with j2 = −1. The correspondence C2 3 (v1, w1) −→ v1 + w1j ∈ H yields an
identification C2 ∼= H. In general, we have an identification C2n ∼= Hn. Let
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J : C2n −→ C2n be the conjugate linear map given by left multiplication by j, that
is,

J(v1, v2, · · · , v2n) = (−v2, v1, · · · ,−v2n, v2n−1) .

Then, J2 = −I, where I is the identity map on C2n. LetG2(C2n) be the Grassmann
manifold of all complex 2-dimensinal subspaces of C2n with its standard Kähler
structure. The quaternionic projective space HPn−1 may be regarded as the totally
geodesic submanifold of G2(C2n) as follows :

HPn−1 = {V ∈ G2(C2n) | V = JV } ,

that is, the set of all complex 2-dimensional subspaces of C2n which are closed
under the action of J . The inner product 〈 , 〉 has the following property :

〈Jv, Jw〉 = 〈v, w〉 = 〈w, v〉 for all v, w ∈ C2n.(1.1)

Let ϕ : M −→ G2(C2n) be a smooth map of a Riemann surface. Let V (ϕ) be
the pull-back of universal bundle over G2(C2n) by ϕ. Then, V (ϕ) is a subbundle
of the trivial bundle V (C2n) = M × C2n. We equip V (C2n) with the standard
Hermitian connected structure compatible with the Hermitian metric 〈 , 〉. For any
subbundle F of V (C2n), we denote by F⊥ the Hermitian orthogonal complement
of F in V (C2n) with respect to 〈 , 〉. Then, F and F⊥ are both equipped with the
Hermitian connected structures induced from that of V (C2n). Moreover, F and

F⊥ both have the Koszul-Malgrange holomorphic structures. Let AF,F
⊥

′ be the
(1, 0)-part of the second fundamental form of F in V (C2n). By taking the image
of the second fundamental form, we may define the new subbundle F1 of V (C2n),

which is defined on M except the singularity subset S. If AF,F
⊥

′ is a holomorphic
section, S is a discrete set. In this case, the line bundle [S] defined by the divisor
S enables us to extend F1 smoothly over M , which is also denoted by F1. Set V0 =

V (ϕ). It is known that A
V0,V

⊥
0

′ is a Hom(V0, V
⊥

0 )-valued holomorphic differential
if and only if ϕ is a harmonic map. It is also known that V1 defines a harmonic
map ϕ1 : M −→ Gk(C2n) with k ≤ 2, where V1 is isomorphic to the pull-back
of the universal bundle over Gk(C2n) by ϕ1. Repeating this procedure, we obtain
the harmonic sequence V0 → V1 → V2 → · · · of the bundles or the harmonic map
sequence {ϕi}. In the case where we use (0, 1)-part of the second fundamental form

AF,F
⊥

′′ , we denote the corresponding harmonic sequence by V0 ← V−1 ← V−2 ← · · ·
(see [Ba-W, B-W, W]).

Definition. A harmonic map ϕ is said to have strong isotropy order r if V0 ⊥ Vi
for i = 1, · · · , r and Vr+1 is not perpendicular to V0 with respect to 〈 , 〉. In the
case of r =∞, ϕ is said to be strongly isotropic or superminimal.

Finally, we prepare the following lemma.

Lemma 1.1. For any subbundle F of V (C2n), we have

(A
JF,(JF )⊥

′ ◦ J)(v) = (J ◦AF,F
⊥

′′ )(v) , (A
JF,(JF )⊥

′′ ◦ J)(v) = (J ◦AF,F
⊥

′ )(v) ,

where v ∈ C∞(F ).

Proof. Let ∂′ and ∂′′ be the (1, 0)- and (0, 1)-differentiations, respectively, of the
flat connection on V (C2n). Then, since J is a conjugate linear map, we have
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∂′ ◦ J = J ◦ ∂′′ and ∂′′ ◦ J = J ◦ ∂′. If we denote by ∇E the connection of the
bundle E, for v ∈ C∞(F ) we have

∂′(Jv) = ∇JF′ Jv +A
JF,(JF )⊥

′ (Jv) ,

J(∂′′v) = J∇F′′ v + JAF,F
⊥

′′ (v) ,

where ∇E′ and ∇E′′ are the (1, 0)- and (0, 1)-part of ∇E , respectively. Since we
see that (JF )⊥ = J(F⊥) by using (1.1), comparing the components of the two
equations, we obtain the first desired equation. Similarly, using the equation
∂′′ ◦ J = J ◦ ∂′′ we obtain the second desired equation.

2. Harmonic maps of finite type

Let G be a compact semisimple Lie group. Let N = G/K be a reductive ho-
mogeneous space. We have the reductive decomposition of the Lie algebra G of G
:

G = K +M , [K,M] ⊂M,

where K is the Lie algebra of K andM is identified with the tangent space ToN of
N at the base point o. Suppose that there is an (inner) automorphism τ : G → G
of order k with fixed set K. Set ζ = exp(2π

√
−1/k). Then, the complexification

GC of G is decomposed as

GC =
∑
i∈Zk

Gi(2.1)

where Gi is the ζi-eigenspace of τ . We have

MC =
k−1∑
i=1

Gi, KC = G0,

Gi = G−i [Gi,Gj ] ⊂ Gi+j

(2.2)

The map G → TxN given by ξ → d
dt |t=0 exp tξ · x restricts to an isomorphism

AdgM → TxN . We denote the inverse map by β : TxN → AdgM ⊂ G and we
may regard β as a G-valued 1-form on N , which is called Maurer-Cartan form of
N (see [B-R]). In this situation, N becomes a k-symmetric space in the sense of
Kowalski ([K]). Define the bundle [Gi] by [Gi]x = Adg · Gi for x = g · o.

Let ψ : M −→ N be a smooth map of a Riemann surface.

Definition. ψ is said to be a primitive map if ψ∗β(∂/∂z) is [G1]-valued.

In the case of k = 2, the primitive map condition is meaningless because MC =
G1. For k > 2, any primitive map ψ is a harmonic map([B, B-P]). Let F : M −→ G
be a (local) lift of ψ : M −→ N with projection given by F → F · o. Such F always
exists locally and is called a framing of ψ.

Now, suppose that G is a matrix group. Set α = F−1dF . Write α = αK + αM
according as the decomposition G = K +M. Write also αM = α′M + α′′M, where
α′M and α′′M are the (1, 0)- and (0, 1)-forms with values in M, respectively. We
have

ψ∗β = AdFαM.(2.3)
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Now, ψ is a primitive map if and only if α′M(∂/∂z) is G1-valued. We give examples
of certain primitive maps, the construction of which is due to Burstall ([B]). We
fix an Iwasawa decomposition :

KC = K ⊕ B,

where B is a solvable subalgebra of KC. Such a decomposition exists since K is
compact so that KC is reductive.

Set

∧GC
τ = {ξ : S1 −→ GC | ξ(ζλ) = τξ(λ) for λ ∈ S1},

which is an infinite dimensional Lie algebra. We equip it with the Sobolev Hr-
topology for some r > 1/2. Let ∧Gτ be the real form

∧Gτ = {ξ ∈ ∧GC
τ | ξ : S1 −→ G} .

Any ξ ∈ ∧Gτ has a Fourier expansion ξ =
∑
ξnλ

n. Define a finite dimensional
subspace ∧d as follows :

∧d = {ξ ∈ ∧Gτ | ξn = 0 for all | n |> d} .

Let d ≡ 1 mod k. Then, ξd ∈ G1 and ξd−1 ∈ KC. Let T be the given maximal
torus in K and N the nilpotent subalgebra given by the positive root spaces and
set H = T C. Then, we have

KC = N ⊕H⊕N , B = (
√
−1T )⊕N .

Any element η ∈ KC may be written as η = ηN +ηH+ηN . Define a map r : KC →
KC by

r(η) = ηN +
1

2
ηH

(see [B-P]). Now, take a ξ0 ∈ ∧d as an initial condition and solve the differential
equation

∂ξ

∂z
= [ξ, λξd + r(ξd−1)]; ξ(0) = ξ0.(2.4)

Then, there is a primitive harmonic map ψ : R2 −→ N with framing F : R2 −→ G
satisfying F−1∂F/∂z = ξd + r(ξd−1).

Definition. A primitive harmonic map ψ obtained by solving the eqaution (2.4)
is said to be of finite type.

We have a question : “What kind of primitive harmonic maps are of finite type?”
There is the following answer:

Theorem 2.1 ([B-F-P-P, B-P, B]). Let ψ : T 2 −→ N be a primitive harmonic
map of a two-torus into a k-symmetric space (k ≥ 2). Suppose that ψ∗β(∂/∂z) is
semisimple on a dense subset of T 2. Then, ψ is of finite type.

Now, let p : G/K −→ G/H be the homogeneous projection with K ⊂ H and
ψ : M −→ G/K be a primitive harmonic map of a Riemann surface. Then, it
is known that p ◦ ψ : M −→ G/H is also a harmonic map ([B-P, B]). Next, we
consider the question: “What kind of harmonic map into Gk(Cn) is covered by a
primitive harmonic map into N?” Let ϕ : M −→ Gk(Cn) be a non-superminimal
harmonic map of a Riemann surface with strong isotropy order r. Set V0 = V (ϕ)
and let V0 → V1 → · · · → Vr−1 → Vr be the harmonic sequence of the bundles
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for ϕ, where each Vi is of rank k for i = 0, 1, · · · , r − 1 and rankVr = n− rk. Set
G = SU(n). Let N = SU(n)/S(U(k)×· · ·×U(k)×U(n−rk)) be the flag manifold.
Any point x of N may be expressed as x = (w0, w1, · · · , wr), where wi is a k-plane
for i = 0, 1, · · · , r − 1 and wr is an (n − rk)-plane. Let p : N −→ Gk(Cn) be the
projection map which assigns to the flag its first element ; p(w0, w1, · · · , wr) = w0.
Fix any point x = (w0, w1, · · · , wr) ∈ N and define Q ∈ G by

Q = ζi on wi for i = 0, 1, · · · , r,

where ζ = exp(2π
√
−1/r+ 1). Then, τ = AdQ is an order (r+ 1) automorphism of

G, and the identity component of its fixed set is conjugate to S(U(k)×· · ·×U(k)×
U(n−rk)), which we denote by K. Thus, N = G/K becomes an (r+1)-symmetric
space (see [K]). We define a map ψ : M −→ N = G/K by

ψ(p) = ((V0)p, (V1)p, · · · , (Vr)p) for p ∈M .

Then, ϕ = p ◦ ψ. It turns out that such ψ is necessarily a primitive map (Lemma
3.1 in [U]).

Finally, we consider the question: “What kind of harmonic map into Gk(Cn) is
covered by a primitive harmonic map of finite type?” Let AFR′ϕ be the ∂′-first return
map for ϕ, that is,

AFR′ϕ = AVr ,V0
′ ◦AVr−1,Vr

′ ◦ · · · ◦AV0,V1
′ .(2.5)

We have the following answer:

Theorem 2.2 ([U]). Let ϕ : T 2 −→ Gk(Cn) be a harmonic map. If the ∂′-first
return map AFR′ϕ for ϕ is semisimple and invertible on a dense subset of T 2, then
ϕ is covered by a primitive harmonic map of finite type into SU(n)/S(U(k)× · · ·×
U(k)× U(n− rk)), where r is the strong isotropy order of ϕ.

For example, any non-superminimal harmonic tori in CPn−1 and any weakly
conformal non-superminimal harmonic tori in G2(C4) may be classified using The-
orem 2.2 (see [U]).

3. Harmonic maps of odd strong isotropy order

In this section, we investigate the ∂′-first return map for harmonic maps of odd
strong isotropy order.

Let ϕ : M −→ HPn−1 ⊂ G2(C2n) be a non-superminimal harmonic map with
strong isotropy order r. Suppose that r is odd. Let AFR′ϕ and AFR′′ϕ be the ∂′- and
∂′′-first return map for ϕ, respectively. As in (2.5), the ∂′′- first return map is
defined by

AFR′′ϕ = A
V−r ,V0
′′ ◦AV−r+1,V−r

′′ ◦ · · · ◦AV0,V−1
′′ .

Let {e1, Je1} be a local unitary basis for V0. Then, using (1.1) and Lemma 1.1 we
have

〈AFR′ϕ (e1), Je1〉 = −〈e1, JA
FR
′ϕ (e1)〉

= −〈e1, A
FR
′′ϕ (Je1)〉

= −(−1)r+1〈AFR′ϕ (e1), Je1〉.
(3.1)
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Since r is odd, we obtain 〈AFR′ϕ (e1), Je1〉 = 0. Similarly, we have 〈AFR′ϕ (Je1), e1〉 =
0. Again, using (1.1) and Lemma 1.1 we obtain

〈AFR′ϕ (Je1), Je1〉 = 〈JAFR′′ϕ (e1), Je1〉
= 〈e1, A

FR
′′ϕ (e1)〉

= (−1)r+1〈AFR′ϕ (e1), e1〉.
(3.2)

Since r is odd, we obtain 〈AFR′ϕ (Je1), Je1〉 = 〈AFR′ϕ (e1), e1〉. Therefore, the ∂′- first
return map for ϕ is of the form

AFR′ϕ =

(
a 0
0 a

)
,(3.3)

where a is non-zero on a dense subset of M because ϕ is non-superminimal. This,
together with Theorem 2.2, yields :

Proposition 3.1. Let ϕ : T 2 −→ HPn−1 be a non-superminimal harmonic map
of strong isotropy order r. Suppose that r is odd. Then, ϕ is covered by a primitive
harmonic map of finite type into SU(2n)/S(U(2)× · · · × U(2)× U(2n− 2r)).

4. Harmonic maps of even strong isotropy order

In this section, we investigate the ∂′- first return map for harmonic maps of even
strong isotropy order.

Let ϕ : M −→ HPn−1 ⊂ G2(C2n) be a non-superminimal harmonic map with
strong isotropy order r. Suppose that r is even.

Let {e1, Je1} be a local unitary basis for V0. Then, by (3.2) we obtain

traceAFR′ϕ = 0.(4.1)

Therefore, by (4.1) and Theorem 2.2 we have :

Proposition 4.1. If detAFR′ϕ 6= 0 on a dense subset of T 2, then ϕ is covered by a
primitive harmonic map of finite type into SU(2n)/S(U(2)×· · ·×U(2)×U(2n−2r)).

Thus, in the following, we consider the case where AFR′ϕ is nilpotent. Set B =

ImAFR′ϕ , which is extended over M and a holomorphic line subbundle of V0. Since

AFR′ϕ is nilpotent, B ⊂ KerAFR′ϕ . Then, we obtain

Lemma 4.1. Define ϕ1 by the forward replacement of B from ϕ, that is,

V (ϕ1) = V (ϕ) 	B ⊕ Im(A
V (ϕ),V (ϕ)⊥

′ |B) .

Then, ϕ1 has strong isotropy order r + 1.

Proof. Set B0 = B and C0 = V (ϕ) 	 B. Define Bi for i = 1, · · · , r by Bi =

Im(A
Vi−1,Vi
′ |Bi−1). Set Ci = Vi	Bi for i = 1, · · · , r−1. Set V ′r = ImA

Vr−1,Vr
′ , Cr =

V ′r	Br and R = Vr	V ′r . By the nilpotency of AFR′ϕ , we see that A
V ′r ,V

′
r
⊥

′ |Br has im-

ages in R and is a holomorphic bundle map. Hence, we set Br+1 = Im(A
V ′r ,V

′
r
⊥

′ |Br )
and R′ = R 	 Br+1. We want to show that A

Br+1,C0

′ ≡ 0. Then, ϕ1 has
strong isotropy order r + 1 (see [B-W]). Suppose the contrary. We denote by
{Vn(ϕ1)} (n ∈ Z) the harmonic sequence of the bundles for ϕ1. We have V−1(ϕ1) ⊂
(B0 ⊕Br+1 ⊕R′). Then, we see that

V− r2−1(ϕ1) ∩ V r
2
(ϕ1) = B r

2 +1 .(4.2)
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On the other hand, since V−1(ϕ1) = JV (ϕ1), using Lemma 1.1 we obtain

JV r
2
(ϕ1) = V− r

2
−1(ϕ1) ,

which, together with (4.2), implies that JV r
2
(ϕ1) ∩ V r

2
(ϕ1) = B r

2
+1, which is im-

possible because the J-invariant subspace must be even-dimensional. Therefore, we

may conclude that A
Br+1,C0

′ ≡ 0 and thus ϕ1 has strong isotropy order r + 1.

A harmonic map ϕ1 : M −→ G2(C2n) is no longer quaternionic. We want to
search for an anti-holomorphic line subbundle δ of V (ϕ1) so that the backward
replacement of ϕ1 by δ may give a harmonic map of strong isotropy order at least
r + 1 which has values in quaternionic projective space HPn−1 ⊂ G2(C2n). The
existence of such a line subbundle is ensured for the harmonic two-spheres in HPn−1

(see [Ba-W]). For the harmonic two-tori in HPn−1, it is not necessarily ensured.
However, we have the following

Proposition 4.2. Let AFR′ϕ1
be the ∂′-first return map for ϕ1 and {Je1, e

1
1} a local

unitary basis for V (ϕ1). Define a line subbundle δ of V (ϕ1) locally by

δ = SpanC{−〈Aϕ1
′′ (Je1), e1〉e1

1 + 2〈Aϕ1
′′ (e1

1), e1〉Je1}.(4.3)

Then, δ is an anti-holomorphic line subbundle of V (ϕ1), which may be extended
over M . Define a harmonic map ϕ2 by the backward replacement of δ from ϕ1. If
(traceAFR′ϕ1

)2 − 4det(AFR′ϕ1
) = 0, then ϕ2 has strong isotropy order greater than or

equal to r + 1 and is quaternionic.

Proof. First of all, we investigate the form of the ∂′- first return map for ϕ1. Since
ϕ1 has strong isotropy order at least r+ 1 by Lemma 4.1, we denote by {Vi}r+1

i=0 its
harmonic sequence of the bundles. Set

A
V0,Vr+1
′′ (e1

1) = βe1.(4.4)

Then, we may set

A
Vr+1,V0

′ (e1) = −βe1
1 + sJe1.(4.5)

Note that β is non-zero on a dense subset of M . From (4.5) we have

A
Vr+1,V0

′ ◦AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ ◦AVr+1,V0

′ (e1) = −βAFR′ϕ1
(e1

1) + sAFR′ϕ1
(Je1) .

Taking the inner product of this equation with e1
1 and using (4.4), we obtain

〈AFR′Vr+1
(e1), e1〉 = 〈AFR′ϕ1

(e1
1), e1

1〉 −
s

β
〈AFR′ϕ1

(Je1), e1
1〉,(4.6)

where AFR′Vr+1
is the ∂′-first return map for Vr+1. On the other hand, using (1.1)

and Lemma 1.1 we have

〈AFR′ϕ1
(Je1), Je1〉 = 〈JAFR′′Vr+1

(e1), Je1〉
= 〈AFR′Vr+1

(e1), e1〉 ,
which, together with (4.6), implies that the ∂′-first return map for ϕ1 is of the form

AFR′ϕ1
=

(
a b
c a− s

β
c

)
,(4.7)

where a = 〈AFR′ϕ1
(e1

1), e1
1〉, b = 〈AFR′ϕ1

(e1
1), Je1〉 and c = 〈AFR′ϕ1

(Je1), e1
1〉. Note that c

is non-zero on a dense subset of M by the definition of V (ϕ1). That δ defined in
(4.3) is an anti-holomorphic subbundle of V (ϕ1) follows from the fact that Aϕ1

′′ is
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an anti-holomorphic section. Now, δ = SpanC{se1
1 + 2βJe1} and Im(A

V0,Vr+1

′′ |δ)
= SpanC{se1 + 2βJe1

1}. Then, JIm(A
V0,Vr+1

′′ |δ) = SpanC{sJe1 − 2βe1
1}, which is

orthogonal to δ with respect to 〈 , 〉 and is contained in V (ϕ1). Therefore, we see
that V (ϕ2) is quaternionic. To investigate the strong isotropy order of ϕ2, we want
to know whether

〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (JIm(A

V0,Vr+1

′′ |δ)), Im(A
V0,Vr+1

′′ |δ)〉
is zero or not. Using (4.4), (4.5) and Lemma 1.1, we calculate

〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (sJe1 − 2βe1

1), se1 + 2βJe1
1〉

= s2〈AVr ,Vr+1
′ ◦ · · · ◦AV0,V1

′ (Je1), e1〉+ 2βs〈AVr ,Vr+1
′ ◦ · · · ◦AV0,V1

′ (Je1), Je1
1〉

− 2βs〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (e1

1), e1〉 − 4β
2〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (e1

1), Je1
1〉

=
s2

β
〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (Je1), A

V0,Vr+1

′′ (e1
1)〉

+ 2βs〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (Je1),− s

β2
A
V0,Vr+1

′′ (e1
1)− 1

β
A
V0,Vr+1

′′ (Je1)〉

− 2s〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (e1

1), A
V0,Vr+1

′′ (e1
1)〉

− 4β
2〈AVr ,Vr+1

′ ◦ · · · ◦AV0,V1
′ (e1

1),− s

β2
A
V0,Vr+1

′′ (e1
1)− 1

β
A
V0,Vr+1

′′ (Je1)〉

= −s
2

β
〈AFR′ϕ1

(Je1), e1
1〉+

2s2

β
〈AFR′ϕ1

(Je1), e1
1〉+ 2s〈AFR′ϕ1

(Je1), Je1〉

+ 2s〈AFR′ϕ1
(e1

1), e1
1〉 − 4s〈AFR′ϕ1

(e1
1), e1

1〉 − 4β〈AFR′ϕ1
(e1

1), Je1〉

= −β
c

(
s2

β
2 c

2 + 4bc) = −β
c
{(traceAFR′ϕ1

)2 − 4det(AFR′ϕ1
)} .

Thus, ϕ2 has strong isotropy order greater than or equal to r+ 1 if and only if the
equation (traceAFR′ϕ1

)2 − 4det(AFR′ϕ1
) ≡ 0 holds.

Remark. (1) If (traceAFR′ϕ1
)2 − 4det(AFR′ϕ1

) 6= 0, then we see that ϕ2 has strong

isotropy order r and is quaternionic, and that AFR′ϕ2
is nilpotent. However, ϕ2 is

different from ϕ.
(2) In the case where detAFR′ϕ1

≡ 0 and traceAFR′ϕ1
6= 0, ϕ̃1 defined by

V (ϕ̃1) = V (ϕ1)	 ImAFR′′ϕ1
⊕ Im(Aϕ1

′′ |ImAFR′′ϕ1
)

has strong isotropy order at least r + 1. However, ϕ̃1 is not quaternionic (it is
quaternionic if AFR′ϕ1

is nilpotent).

5. Harmonic tori in HP 2
and HP 3

In this section, we prove our results. Before stating the results, we give some
definitions.

Definition. Let ϕ : M −→ G2(C2n) be a harmonic map of strong isotropy or-
der r and {Vi} be the harmonic sequence of the bundles for ϕ, where V0 = V (ϕ).
If there is some integer k with 1 ≤ k ≤ r such that rankVk−1 = rankV0 and

rankImA
Vk−1,Vk
′ < rankV0, then rankImA

Vk−1,Vk
′ = 1 and ImA

Vk−1,Vk
′ defines a har-

monic map ψ : M −→ CP 2n−1. Let {Vn(ψ)} be the harmonic sequence of the bun-
dles for ψ, where V0(ψ) = V (ψ). Then, there is an anti-holomorphic line subbundle
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F of (V−1(ψ) ⊕ V (ψ))⊥ such that V (ϕ) = G(−k+1)(V−1(ψ) ⊕ F ). In this case, we
say that ϕ is obtained from ψ by the extension and flag transforms. In particular,
if ϕ has images in HPn−1, we choose the above F such that G(−k+1)(V−1(ψ)⊕ F )
is J-invariant. Then,

V (ϕ) = G(−k+1)(V−1(ψ)⊕ F ) ∩ V−k(ψ)⊕ J(G(−k+1)(V−1(ψ)⊕ F ) ∩ V−k(ψ)).

In this case, we say that ϕ is a quaternionic pair obtained from ψ by the extension
and flag transforms.

We denote by nG the n-products of a Lie group G. We embed U(2) into Sp(2)

by U(2) 3
(
a b
c d

)
→


a 0 0 b
0 d̄ −c̄ 0
0 −b̄ ā 0
c 0 0 d

 ∈ Sp(2). Thus, nU(2) may be embedded

in nSp(2). We need the following lemma :

Lemma 5.1. For ζ = exp(2π
√
−1/n) with n ≥ 2, let Q =

(
A 0
0 A

)
∈ Sp(n) ⊂

U(2n), where

A =


1 0 0 · · · 0
0 ζ 0 · · · 0
0 0 ζ2 0 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 ζn−1

 .

Then, τ = AdQ defines an n-symmetric space structure on Sp(n)/2Sp(1)×
(n−2

2 )U(2) or Sp(n)/Sp(1) × (n−1
2 )U(2) according as n is even or odd, in the

same way as it defines an n-symmetric space structure on U(2n)/nU(2). More-
over, if ϕ : M −→ U(2n)/nU(2) is a primitive harmonic map the image of which
is contained in N = Sp(n)/2Sp(1)× (n−2

2 )U(2) or N = Sp(n)/Sp(1)× (n−1
2 )U(2)

according as n is even or odd, then ϕ is also a primitive harmonic map regarded as
a map into N .

Proof. τ is an order n automorphism of U(2n) and its stabilizer is conjugate to
nU(2). Since τ leaves Sp(n) invariant, it also defines an order n automorphism of
Sp(n). Its stabilizer is conjugate to Sp(n)∩nU(2), which is 2Sp(1)× (n−2

2 )U(2) or

Sp(1)× (n−1
2 )U(2) according as n is even or odd. Let G and G′ be the Lie algebras

of U(2n) and Sp(n), respectively. Since each eigenspace of τ for G′ is nothing but
the restriction of the eigenspace of τ for G to G′, if the image of ϕ is contained in
N then ϕ is also a primitive harmonic map regarded as a map into N .

Now, we prove the following

Theorem 5.1. Let ϕ : T 2 −→ HP 2 ⊂ G2(C6) be a non-superminimal harmonic
map of a two-torus. Then, either ϕ is a quaternionic pair obtained from a harmonic
map into CP 5 by the extension and flag transforms, or ϕ is covered by a primitive
harmonic map of finite type into HP 2 or Sp(3)/Sp(1) × U(2) according as the
isotropy order of ϕ is one or two, respectively.

Proof. Let r be the strong isotropy order of ϕ. Suppose that rank ImA
Vi−1,Vi
′ =

rankV0 for i = 0, 1, · · · , r; otherwise we see that ϕ is a quaternionic pair obtained
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from a harmonic map into CP 5 by the extension and flag transforms. Then, r =
1, 2. If r = 1, then by Proposition 3.1 ϕ is a primitive harmonic map of finite
type into HP 2 ⊂ G2(C6). If r = 2, then we have V−1 = V2, which implies that
det(AFR′ϕ ) 6= 0. Therefore, by Proposition 4.1 ϕ is covered by a primitive harmonic
map ψ of finite type into U(6)/3U(2). Moreover, by Lemma 3.1 in [G], ψ has its
images in a totally geodesic submanifold Sp(3)/Sp(1)×U(2) of U(6)/3U(2). Then,
Lemma 5.1 implies the desired result.

Theorem 5.2. Let ϕ : T 2 −→ HP 3 ⊂ G2(C8) be a non-superminimal harmonic
map of a two-torus. If the strong isotropy order of ϕ is odd, then ϕ is covered by a
primitive harmonic map of finite type into HP 3 or Sp(4)/2Sp(1)×U(2) according
as the strong isotropy order of ϕ is one or three. If the strong isotropy order of ϕ
is even, then ϕ is obtained by either of the following methods:

(1) If det(AFR′ϕ ) 6= 0, then ϕ is covered by a primitive harmonic map of finite
type into SU(8)/S(2U(2)× U(4)).

(2) If det(AFR′ϕ ) ≡ 0, then either ϕ is a quaternionic pair obtained from a har-

monic map into CP 7 by the extension and flag transforms, or ϕ is obtained from
ϕ1 : T 2 −→ G2(C8), which has strong isotropy order 3 and satisfies V−1(ϕ1) =
JV (ϕ1), by the backward replacement. Moreover, ϕ1 is obtained by either of the
following methods: (2-1) ϕ1 is covered by a primitive harmonic map of finite type
into U(8)/4U(2); (2-2) ϕ1 is obtained by the forward replacement from some ϕ2,
which is quaternionic and has strong isotropy order 3 and is covered by a primitive
harmonic map into Sp(4)/2Sp(1) × U(2); (2-3) ϕ1 is obtained from a harmonic
map into CP 7 by the extension and flag transforms.

Proof. Let r be the strong isotropy order of ϕ. Suppose that rank ImA
Vi−1,Vi
′ =

rankV0 for i = 1, · · · , r; otherwise we see that ϕ is a quaternionic pair obtained
from a harmonic map into CP 7 by the extension and flag transforms. Then, r =
1, 2, 3. If r = 1, then by Proposition 3.1 ϕ is a primitive harmonic map into
HP 3 ⊂ G2(C8). If r = 3, then by Proposition 3.1, ϕ is covered by a primitive
harmonic map into U(8)/4U(2). Since JV1 = V3, and V0 and V2 are J-invariant,
in the same way as in Lemma 3.1 in [G] we see that ϕ has its images in a totally
geodesic submanifold Sp(4)/2Sp(1)×U(2) of U(8)/4U(2). Then, Lemma 5.1 implies
the result of this case. If r = 2 and det(AFR′ϕ ) 6= 0, then by Proposition 4.1
ϕ is covered by a primitive harmonic map into the flag manifold stated in the
theorem. If r = 2 and det(AFR′ϕ ) ≡ 0, then by Proposition 4.2 we obtain a harmonic
map ϕ1 which has strong isotropy order 3 and satisfies V−1(ϕ1) = JV (ϕ1). If
(traceAFR′ϕ1

)2 − 4det(AFR′ϕ1
) 6= 0 and det(AFR′ϕ1

) 6= 0, then by Theorem 2.2, ϕ1 is
covered by a primitive harmonic map of finite type into the flag manifold stated in
the theorem. If (traceAFR′ϕ1

)2 − 4det(AFR′ϕ1
) ≡ 0, then by Proposition 4.2 we obtain

a harmonic map ϕ2 which is quaternionic and has strong isotropy order 3. By the
above argument, we see that ϕ2 is covered by a primitive harmonic map of finite
type into Sp(4)/2Sp(1)×U(2). Finally, if det(AFR′ϕ1

) ≡ 0 and trace(AFR′ϕ1
) 6= 0, then

we see that the harmonic sequence of ϕ1 is reducible, that is, ϕ1 is reduced to a
harmonic map into CP 7. Hence, ϕ1 is obtained from a harmonic map into CP 7 by
the extension anf flag transforms.

Remark. To classify all harmonic two-tori in HPn−1, we must analyze the class of
harmonic maps ϕ : T 2 −→ G2(C2n) which have the properties that det(AFR′ϕ ) ≡ 0,

trace(AFR′ϕ ) 6= 0 and V−1(ϕ) = JV (ϕ).
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