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Introduction

A harmonic map $f$ from a compact Riemannian manifold $N$ to a
Riemannian manifold $M$ is called stable if the second variation of the
energy is nonnegative for every variation of the map $f$. A beautiful
class of compact Kaehler manifolds is a class of irreducible Hermitian
symmetric spaces of compact type $(P_{m}(C), Q_{n}(C),$ $G_{p,q}(C),$ $Sp(k)/U(k)$ ,
$SO(2k)/U(k)$ , $E_{6}/Spin(10)\cdot T^{1}$ , $E_{7}/E_{6}\cdot T^{1}$). We consider stable harmonic
maps from or to compact Hermitian symmetric spaces. In this note we
show the following.

THEOREM. Let $M$ be a compact irreducible Hermitian symmetric
space of complex dimension $m$ and $\Sigma$ be a compact Riemann surface.
Then any stable harmonic map $f$ from $\Sigma$ to $M$ is holomorphic or anti-
holomorphic.

In the case where $\Sigma$ is a Riemann sphere, the above result was
obtained by Siu [S-l, $Z$] (see also [B-R-S]). In the case where $M$ is a
complex projective space and deg $f|\geqq m(p-1)/(m+1)$ where $p$ denotes the
genus of $\Sigma$ , the above result was obtained by Eells and Wood [E-W].
They used algebraic geometric arguments (theorems of Riemann-Roch
and Grothendieck). Recently, by using a twistor space over the domain
manifold, Burns and de Bartolomeis have shown the above result in the
case where $M$ is a complex projective space (cf. Remark 6 of [B-R-S]).
We show the above theorem by a simple argument for the second varia-
tions used in [L-S].

1. Proof of Theorem.

Let $f:N\rightarrow M$ be a harmonic map from an n-dimensional compact
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Riemannian manifold $N$ to a Riemannian manifold $M$. Let $f^{-1}TM$ be the
pull-back vector bundle of the tangent bundle $TM$ by $f$. We denote by

$\langle$ $\rangle$ and $\nabla$ the induced inner product and the induced connection of
$f^{-1}TM$. The metric $\langle, \rangle$ extends to the complexified tangent space af

a complex bilinear form $(, )$ or a Hermitian inner product \langle \langle , \rangle ). The cur.
vature tensor $R^{r}$ of $M$ is defined by $R^{r}(X, Y)=\nabla_{[X,Y]}-[\nabla_{X}, \nabla_{Y}]$ . By the
second variational formula for harmonic maps (cf. [E-L]), for any variation

$f_{t}$ of $f=f_{0}$ with the variational vector field $V=(\partial/\partial t)f_{t}|_{t=0}$ on $C^{\infty}(f^{-1}TM)$

the second variation for energy is given as follows:

$\frac{\partial^{2}}{\partial t^{2}}E(f)|_{t=0}=\int_{N}\langle X^{(V),V\rangle dv_{N}}f$ ,

$f_{f}(V)=-\sum_{i=1}^{\cdot}\nabla_{*}^{2},$. $V-\sum_{=1}^{n}R^{r}(df(e), V)df(e)$ .
Here $\{e_{i}\}$ is an orthonormal basis at the tangent space of $N$.

Suppose that $M$ is a compact Hermitian symmetric space of complex
dimension $m$ and with the complex structure $J$. Let $\mathfrak{H}$ be the Lie algebra
of all holomorphic vector fields on $M$ and St the Lie algebra of all Killing
vector fields on $M$. Then, by the theorem of Matsushima, we have a
decomposition $\mathfrak{H}=R+J\Re$ . Since $M$ is a symmetric space, we can $defin\in$

an ad(St)-inner product on St compatible with the symmetric metric of $M_{(}$

Any $ V\in$ St satisfies $\langle\nabla_{X}V,Y\rangle=-\langle X, V_{Y}V\rangle$ and $\nabla^{2}V(X, Y)=R^{r}(V,Y)X_{(}$

We define a quadratic form $Q_{f}$ on $R$ by

$Q_{f}(V)=\int_{N}\langle Xf(JV), JV\rangle dv_{N}$

for any $Ve$ se. We deform the harmonic map $f$ along the holomorphic
vector field J $V$ and compute its second variation. For any $ V\in$ St, wc
compute

(1.1) $l_{f}(JV)=-\sum_{=1}^{\cdot}\nabla_{l}^{2},,$ $JV-\sum_{i=1}^{n}R^{r}(df(e_{i}), JV)df(e_{i})$

$=-\sum_{=1}^{\cdot}(\nabla^{2}JV)(e_{i}, e_{i})-\sum_{i=1}^{n}R^{r}(dfl_{\backslash }e),$ $JV$)$df(e)$

$=\sum_{i=1}^{n}(JR^{r}(dJ\langle e_{i}),V)df(e_{i})-R^{r}(df(e), JV)df(e_{i}))$ .
Next we take the trace of $Q_{f}$ on St with respect to the inner product. We
have

(1.2) trace $ Q_{f}=\int_{N}\sum_{i=1}^{n}\sum_{\alpha=1}^{2n}(\langle JR^{r}(df(e_{i}), v_{\alpha})df(e), Jv_{\alpha}\rangle$
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$-\langle R^{H}(df(e_{i}), Jv_{\alpha})df(e_{i}), Jv_{\alpha}\rangle)dv_{N}$

$=0$ ,

where $\{v_{\alpha}\}$ denotes an orthonormal basis at the tangent space of $M$.
Suppose that $f$ is a stable harmonic map. By (1.2) and the stability

of $f$, we have $Q_{f}(V)=\int_{N}\langle\ovalbox{\tt\small REJECT}_{f}(JV), JV\rangle dv_{N}=0$ for any $VeR$ . Since $f$

has no negative eigenvalue, it follows that, for all $V\in R,$ $\mathscr{J}_{f}(JV)$ vanishes
identically along $f$. Hence by (1.1) we get the following equation which
any stable harmonic map $f$ to a compact Hermitian symmetric space
satisfies: For any $x\in T_{f(p)}M$ and $p\in N$,

(1.3) $\sum_{i=1}^{n}(JR^{H}(df(e_{i}), X)df(e_{i})-R^{H}(df(e_{i}), JX)df(e_{i}))=0$ .
Now we recall a curvature operator acting on the symmetric square

$T^{1,0}M\cdot T^{1,0}M$ of the $(1, 0)$-tangent space of a Kaehler manifold $M$. The
curvature operator $e$ is defined by

$\langle\langle 8(X\cdot Y), Z\cdot W\rangle\rangle=(R^{H}(X,\overline{Z})Y,\overline{W})$

for $X,$ $Y,$ $Z,$ $W\in T^{1,0}M$. Then we can express (1.3) in terms of $e$ as
follows:

PROPOSITION 1.

(1.4) $e(\sum_{=1}^{n}d^{1,0}f(e_{i})\cdot d^{1,0}f(e_{i}))=0$ ,

at any $f(p),$ $p\in N.$ Here $d^{1,0}f(X)$ denotes the $(1, 0)$-component of $df(X)$ .
When $M$ is a Hermitian symmetric space, the eigenvalues of the

curvature operator $e$ were determined by Calabi-Vesentini [C-V], Borel
[B]. Itoh [I] studied properties of the curvature operator for Kaehlerian
C-spaces. According to their results we know that a Hermitian sym-
metric space is irreducible if and only if its curvature operator $e$ has
no zero-eigenvalue.

Moreover suppose that $M$ is an irreducible Hermitian symmetric space
of compact type. By the above fact and (1.4), we have

(1.5) $\sum_{i=1}^{n}(d^{1,0}f(e_{i})\cdot d^{1,0}f(e_{i}))=0$ .
If $N$ is a compact Riemann surface $\Sigma$ , then (1.5) becomes

(1.6) $(\sum_{\alpha=1}^{m}f_{1}^{\alpha}u_{\alpha})\cdot(\sum_{\beta=1}^{n}f\frac{\prime}{\iota}u_{\beta})=0$ .
Here $\{u_{\alpha}\}$ is a unitary basis at $f(p)\in M,$ $\{z\}$ is a local complex coordinate



388 YOSHIHIRO OHNITA AND SEIICHI UDAGAWA

of $\Sigma$ , and $f_{1}^{\alpha}=\langle\langle d^{1,0}f(\partial/\partial z),$ $u_{\alpha}\lambda,$ $ f\frac{\alpha}{1}=\langle\langle d^{1,0}f(\partial/\partial\overline{z}), u_{\alpha}\rangle\rangle$ . (1.6) is equivalent to

(1.7) $f_{1}^{\alpha}f_{1}-=0$ for $\alpha=1,$ $\cdots,$ $m$ ,

(1.8) $f_{\iota^{\alpha}}f\frac{\beta}{1}+f_{1}^{\beta}f\frac{\alpha}{1}=0$ for $\alpha\neq\beta$ , $\alpha,$ $\beta=1,$ $\cdots,$ $m$ .
By (1.7), (1.8) and the smoothness of $f$, there is an open subset of $\Sigma$ on
which $f$ is holomorphic or antiholomorphic. By Aronszajn’s unique con-
tinuation theorem (cf. [E-L]), $f$ is holomorphic or antiholomorphic. There-
fore we obtain Theorem.

2. On stable harmonic maps from Hermitian symmetric spaces.

In this section we give an equation which any stable harmonic map
from a compact Hermitian symmetric space to a Riemannian manifold
satisfies. This equation seems to be useful to show the holomorphicity
of a compact Hermitian symmetric space to a specific Kaehler manifold.

We recall another curvature operator of a Kaehler manifold acting
on $(1, 1)$-forms. The curvature operator $\ovalbox{\tt\small REJECT}:\wedge^{2}TM\rightarrow\wedge^{2}TM$ is defined by
$\langle \mathscr{G}(\omega_{i}\wedge\omega_{j}), \omega_{k}\wedge\omega_{l}\rangle=\langle R(e_{i}, e_{j})e_{k}, e_{l}\rangle$ , where $\{e_{i}\}$ is an orthonormal basis of
$T.M$ and $\{\omega_{l}\}$ is its dual basis. Given a vector bundle $E$ over $M$ , we can
extend the curvature operator re to a linear operator va: $(\wedge^{2}TM)\otimes E\rightarrow$

$(\wedge^{2}TM)\otimes E$ in a natural manner. We denote also by $\ovalbox{\tt\small REJECT}$ its complex ex.
tension. We have a decomposition $\wedge^{2}TM^{c}=\wedge^{(2,0)}TM+\wedge^{(1.1)}TM+\wedge^{(0,2)}TM$

via the complex structure of $M$. By the Kaehler identity, we have
$\mathscr{G}(\wedge^{(2,0)}TM)=\mathscr{G}(\wedge^{t0,2)}TM)=0$ . We denote by $\ovalbox{\tt\small REJECT}^{(1.1)}$ the restriction of $\mathscr{G}$

to $\wedge^{(1.1)}TM$. When $M$ is a Hermitian symmetric space, the operator $\mathscr{G}^{(1,1}$

is nonnegative. According to the theorem of Siu-Yau [S-Y], we know that
if the operator $\mathscr{B}^{\mathfrak{l}1,1)}$ is positive, $M$ is biholomorphic to a complex projective
space $P.(C)$ .

Let $M$ be a complex m-dimensional compact Hermitian symmetri $($

space with the complex structure $J$. We use the same notation as ir
Section 1. Let $f:M\rightarrow N$ be a harmonic map from $M$ to a Riemanniar
manifold $N$. By (1.4) of $[0]$ , for $VeR$ , we have

(2.1) $X(df(JV))=-df(\sum_{i=1}^{2*}\nabla_{\epsilon_{i}}^{2}$ ,. $JV+Ric^{r}(JV))$

$-2\sum_{=1}^{2n}(\nabla df)(e, \nabla^{r_{i}}JV)$

$=-df(\sum_{=\iota}^{2*}JR^{r}(V, e)e+Ric^{r}(JV))$

$-2\sum_{=1}^{2n}(\nabla df)(e_{i}, \nabla_{*}^{r}JV)$
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$=-df(-JRic^{H}(V)+Ric^{H}(JV))$

$-2\sum_{i=1}^{2n}(\nabla df)$ ( $e_{i}$ , VYJ $V$ )

$=-2\sum_{i,\dot{g}=1}^{2m}\langle J\nabla_{e}^{u_{i}}V, e_{j}\rangle(\nabla df)(e_{i}, e_{j})$ .
We define a quadratic form $Q^{f}$ on $R$ associated with $f$ as follows:

$Q^{j}(V)=\int_{1f}\langle \mathscr{J}_{f}(df(JV)), df(JV)\rangle dv_{H}$ .
By (2.1) we have

$Q^{f}(V)=-2\int_{H}\sum_{i,\dot{g}=1}^{2fn}\langle J\nabla_{e_{i}}^{M}V, e_{j}\rangle\langle(\nabla df)(e_{i}, e_{j}), df(JV)\rangle dv_{H}$ .
Hence we get $traceQ^{f}=0$ .

Suppose that $f$ is stable. Then for any $ V\in$ SD we get $\mathscr{J}_{f}(df(JV))=0$ .
It follows from (2.1) that

(2.2) $\sum_{i,\dot{g}=1}^{2m}\langle J\nabla_{e_{l}}^{M}V, e_{\dot{J}}\rangle(\nabla df)(e_{i}, e_{j})=0$

for any $x\in M$ and any $V\in R_{x}$ . Here $St_{x}=$ { $ V\in$ St; $V_{x}=0$} is the Lie algebra
of the isotropy subgroup at $x$ of the isometry group. Let $\theta=\Omega_{x}+\mathfrak{m}$ be
the canonical decomposition of St as a symmetric space. Identifying $\mathfrak{m}$

with $T_{x}M$ , we have $\nabla^{M}V=-adV$ for $V\in R_{x}$ . Hence (2.2) becomes

(2.3) $\sum_{\dot{g}=1}^{2m}\langle JR^{H}(X, Y)e_{i}, e_{j}\rangle(\nabla df)(e_{i}, e_{j})=0$

for any $x\in M$ and any $X$, Ye $T.M$. We can write the equation (2.3) in
terms of the curvature operator te as follows:

PROPOSITION 2. Let $M$ be a compact Hermitian symmetric space and
$f:M\rightarrow N$ be a stable harmonic map from $M$ to a Riemannian manifold
N. Then the second fundamental form of the map $f$ satisfies the following
equation

$\mathscr{G}^{t1,1})(\sum_{i.j=1}^{f\hslash}(\nabla df)(\frac{\partial}{\partial z_{i}},$ $\frac{\partial}{\partial\overline{z}_{\dot{f}}})dz_{i}\wedge d\overline{z}_{j})=0$ .
We know that a compact Hermitian symmetric space is a complex

projective space if and only if the kernel of $\mathscr{G}^{(1,1)}$ is zero. Therefore by
the above proposition we get that any stable harmonic map from a complex
projective space with the Fubini-Study metric to a Riemannian manifold
is pluriharmonic (cf. $[0]$).



390 YOSHIHIRO OHNITA AND SEIICHI UDAGAWA

REMARK. At a conference of Osaka university on May 15-16 in 1987,
Professor J. Eells told us that our theorem was also proved by Burstall,
Rawnsley, Burns and de Bartolomeis at the same time as the authors
did it.
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