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ON SLANT IMMERSIONS INTO KAHLER MANIFOLDS

BY SADAHIRO MAEDA, YOSHIHIRO OHNITA AND SEIICHI UDAGAWA

Introduction.

Let φ: M-*N be an isometric immersion of a Riemannian manifold into an
almost Hermitian manifold with almost complex structure /. Then, φ is called
slant if the angle between jφ*(X) and <p*(TpM) is constant for any X^TPM
and any p^M. The typical examples of slant immersions are Kahler immer-
sions and totally real immersions, where the slant angles are 0 and π/2, respec-
tively. A slant immersion is called proper if it is neither a Kahler immersion
nor a totally real immersion. In the case where M is a Riemann surface and
N is a Kahler manifold, the slant angle was introduced as the Kdhler angle and
studied by S. S. Chern and J. G. Wolf son [CW]. Examples of slant immersions
of a Riemann sphere S2 into a complex projective space CPn were given as
the Veronese sequence of harmonic maps from S2, which are classified in [BO]
and [BJRW] in the case where S2 has constant curvature (see also [01]). The
present concept of slant immersion was first introduced and studied by B. Y.
Chen [C]. The examples of proper slant immersions into CA are given in
[C-T], Recently, Tazawa [T] has given examples of slant immersions into
Cn with any given slant angle. However, there are a few results on slant
submanifolds in CP71. In this case, any general method to check whether given
an immersion is slant or not is not known.

The main purpose of this paper is to study slant submanifolds in CPn. In
Section 1, we give some sufficient conditions for an isometric immersion φ of a
compact Kahler manifold M into a Kahler manifold N to be slant (Theorem
1.2, Proposition 1.3). In Theorem 2.1 of Section 2, we show that the condition
of Theorem 1.2 is satisfied for a G-equivariant isometric immersion of a Kahler
C-space M with WM)=1 into CPn. In this case, the slant angle is explicitly
given by cos~1(4π|deg(^))|/c vol(S)), where S is a rational curve of M which
represents a positive generator of H2(M; Z) and c is a (constant) holomorphic
sectional curvature of CPn. Consequently, it turns out that SU(ra+l)-equivariant
isometric immersions of CPm into CPN constructed and treated by the first
and second author ([M], [02]) are slant, and that pluriharmonic maps con-
structed in [OU] give many examples of proper slant immersions into CPn.
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In Section 3, we give an extension of a theorem obtained in [MU]. An
isometric immersion φ: M->N is called circular geodesic if φ sends any geodesic
in M into a circle in N. We here note that "circular geodesic" is equivalent
to "helical geodesic of order 2" regardless of the ambient manifold N (for details,
see [M]). K. Sakamoto [S] classified such immersions in case N is a real
space form. However, in case N is a (non-flat) complex space form, the situa-
tion is quite different because of the presence of the complex structure of the
target manifold. All the known examples of circular geodesic submanifolds in
non-flat complex space forms are submanifolds with parallel second fundamental
form, which are known to be Kahler or totally real. The first author and N.
Sato [MS] proved that there are no other examples of circular geodesic sub-
manifolds in the class of CR-submanifolds. A CR-submanifold is defined by the
condition that its tangent space consists of the holomorphic distribution and the
totally real distribution and the dimension of each distribution is constant over
the submanifold. Hence, a CR-submanifold can not be a proper slant submani-
fold. Therefore, it is reasonable to look for circular geodesic submanifolds in
the class of slant submanifolds. We prove that a circular geodesic slant sub-
manifold with constant scalar curvature in a non-flat complex space form is a
parallel submanifold, hence the immersion must be Kahler or totally real (Theo-
rem 3.3).

The first author is partially supported by Ishida Foundation.

§ 0. Preliminaries.

Let φ: M-+N be an isometric immersion of a Riemannian manifold into a
Riemannian manifold. Let φ*: TM->TN be the differential of φ, where TM
and TN are the tangent bundles of M and N, respectively. We often identify
φ*(X) with X itself, where X^TPM. Suppose that N is an almost Hermitian
manifold with almost complex structure /. Then, the slant angle θx(p) be-
tween φ*(X) and φ*(TpM) is given by

(0.1) cosθx(p)=- J-— <πojφ*(X), />*(*)> with | X | = 1 ,
\π*Jφ*(X)\

where π: T φCP)N^>φ*(T PM) is an orthogonal projection. Take an othonormal
basis {βt} of TPM. Then we have π Jφ*(X)=jyi=ι(π Jφ*(X)9 φ*(eι)yφ*(eι) and
\π Jφ*(X)\=cmθΣ(p), where n=dimM, so that (0.1) becomes

(0.2) cos2θx(p)= h <Jφ*(X), 9^ex)Y for X^TPM with \X\ = 1 .
t=l

Next, we return to the general situation that N is a Riemannian manifold.
Let 7 and 7 be the Riemannian connection and the induced connection of N
and M, respectively. The second fundamental form a of the immersion is de-
fined by σ(X, Y)=VXY-VXY, where X, YΪΞTM. The mean curvature vector
is (l/ri)tvgσy where g is the Riemannian metric of M, and the mean curvature
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H is the length of the mean curvature vector. If H is identically zero, then
the immersion ψ is called minimal. For a vector field ξ normal to M, set Ίxξ
^—AξX+Dxξ, where —AξX and Dxξ are the tangential and the normal com-
ponents of 7jr£, respectively. Then, D is the normal connection of the normal
bundle NM of M. We denote by 7 the connection on the bundle (®2TM)(g)AΓM.
Then, the covariant derivative of a is defined by

(ϊxσ)(Y, Z)=Dx(σ(Y, Z))-σ{lxY, Z)-σ(Y, 1XZ).

The second fundamental form is parallel if 7tf=0. The immersion φ is said to
be (λ—) isotropic if \σ(X,X)\ is equal to a constant λ for any unit tangent
vector X at each point, and φ is said to be (λ—) constant isotropic if the func-
tion λ is constant on M. The polarization argument means that φ is Λ-isotropic
if and only if

(0.3) <σ(X, Y\ σ{Z, W)>+<σ(X, Z\ σ(Y, W)>+<σ(X, W), σ(Y,

, YXZ, W>+<X, ZXY, W>+<X, WXY, Z »

for any X, Y, Z, W<ΞΞTM.

Now, suppose that N=N(c) is a complex space form of constant holomorphic
sectional curvature c with complex structure tensor /. Then, the curvature
tensor R of N(c) is given by

(0.4) <R(X, Ϋ)Z, W>

=J{<Ϋ, z><x, ίv>-<x, ZXΫ, w>+<JΫ, zxjx, ivy

, JΫXJZ, ffy\,

where X, Ϋ, Z} WZΞTN. Then, the Gauss and Codazzi equations are respec-

tively given by

(0.5) <R(X, Y)Z, W}

zy<x, wy-<x, zy<y, wy+<jγ, zy<jx, wy

ZXJY, wy+2<x, ]γy<jz, wy\

+<σ(Y, Z\ σ(X, W)y-<σ{Xf Z\ σ(Y, W)>,

(0.6) <$zσ)<y, Z)-(ϊYσ)(X, Z)

J, zyjx-<jx, Z>JY+2<X, jYyjz} -,

where R is the curvature tensor of M and {*}± denotes the normal component
of {*}. Finally, we mention the following result which is necessary in Sec-
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tion 3.

PROPOSITION 0.1 ([MS]). Let M be a submanifold in a complex space form
N(c) of constant holomorphic sectional curvature c with complex structure tensor
J. Then, the following two conditions are equivalent:

(i) M is a circular geodesic submanifold of N(c),
(ii) M is nonzero constant isotropic and the second fundamental form a of

the immersion satisfies

(ϊxσ)(Y, Z)=j{<X, JY>JZ+<X, JZyjY}- for any X, Y, Z^TM.

% 1. Sufficient conditions for the immersion to be slant.

Let φ: (Λf, g)-+(N, <>>,/) be an isometric immersion. We denote by θx(p)
the angle between Jφ*(X) and φ*(TpM) for X<=TVM. Then, at any point of
M, we have

(1.1) cos2 0 X = Σ <Jφ*(X), φ*(eτ)y for X&TM with \X\ =1,
1 = 1

where {et} a local field of orthonormal frames on M and w=dimM. In case
M i s a Kahler manifold, we choose a local field of unitary frames {ut} in such
a way that

^ ( M α ) ( ί = l •• m)

where JM is a complex structure tensor of M and ra=dimcM, and we set

<Pi=φ*(ut), ψi=φ*(jΰt) f o r ί = l , ••• , m .

Since cos 0 is a continuous function on the unit tangent bundle of M, we may
assume that cos 0^0 in case φ is slant.

LEMMA 1.1. (I) φ is slant with slant angle cos'V if and only if

(1.2) ΣJ <Jφ*(ej), <p*(et)><Jφ*(ek), φ^eι)y=c%k, j , k = l, ••• , n.
1

where c is a nonnegative constant.
(II) Suppose that M is an m-dimensional Kahler manifold. If <P*(ON is of

type (1, 1), where ωN is the Kahler form of N, then, φ is slant with slant angle
cos"1^ if and only if

(1.3) Σ <jψj, ψiXJψk, <pi}=c2djk for /, fe=l, ••• , m ,
t=l

2S a nonnegative constant.
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Proof. (I) Suppose that ψ is slant with slant angle cos'V. Set X—e3 in
(1.1). Then we have

Σ <Jφ*(fij), 9*(e0>2-cos2 θej=c*.
1 = 1

Next, set X=(X/VY)(ej+ek) for jΦk in (1.1). Then we have

so that we have the equation (1.2). Conversely, if the equation (1.2) holds, then,
since cos θ is a continuous function on the unit tangent bundle of M, we can
easily see that φ is slant with slant angle cos"1 c.

(II) If φ*ωN is of type (1, 1), then <j<pi,<pj>=<j<pu ψj>=0 for * , / = l , - , m .
Hence, the equation (1.2) is equivalent to the conditions that, for /, k=l, --,m

Re( Σ ijψh ψiXJψky φϊ»=c2δjk and

which are equivalent to the equation (1.3). q. e. d.

Now, we prove

THEOREM 1.2. Let φ: M-^N be an isometric immersion of an m-dimensional
compact Kdhler manifold with Kdhler form ωM into a Kdhler manifold with
Kdhler form ωN. Assume that b2(M)=l and φ*ωN is of type (1, 1). Then, the
following three conditions are equivalent.

( i ) trgφ*ωN=V— lc=constant, where g is the Kdhler metric on M,

(iii) φ is slant with slant angle cos'1 (\c\/m),

Proof. (i)=Φ(ii). If trgφ^ωN=y/:-ϊc—constant, then Σf=i ijψu φύ=\/—lc.
Since φ*ωN is a closed real (1, l)-form and b2(M)=l, we have {.φ*ωN~\ — a[ωM']
for some real constant α, where ωM is the Kahler form of M. Hence, we see
that

where / is a real valued function on M. Taking the trace of this equation,
we see that Δ/ is constant, hence / is constant. Therefore, we obtain

ijψu ψjy^—V^δij, for 2, j = l , •••, m .

which, implies (ii).
(ii)=Φ(iii). This follows from Lemma 1.1.
(iii)=4(i). By Lemma 1.1, we have

TO £ 2

U 4) Σ AtjAjt = —jδik, for i, k—l, ••• , m ,
j=i m
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where A j == V^ζjψi, <pj>, which is a Hermitian matrix. We choose a unitary
basis {Uj} so that Atj=λiδiJ with λ^R for * = 1 , •••, m. Then, (1.4) reads as
λ2

t=c2/m2, hence λi=±(c/m) for 2=1, •••, m. Thus, V—1 t r ^ ^ ^ ^ t r ^ is some
constant, which is denoted by c. By the implications of (i)=Kii) and (ii)=Φ(iii),
we have Alj^(c/m)δiJ, which, together with (1.4), yields | c | — | c | , hence chang-
ing the sign of c if necessary, we have trgφ*ωN=V--ϊc, which is constant

q. e. d.

Remark. (1) In case dim c M=l, φ is slant if and only if t r ^ * ^ ^ c o n s t a n t ,
hence we may regard Theorem 1.2 as a natural extension to higher dimensional
case because the assumptions that b2(M)=l and φ*ωN is of type (1, 1) are auto-
matically satisfied for the case dimcA/=l.

(2) Let M be a compact slant submanifold of a Kahler manifold. If M is
not a totally real submanifold, then we see that M is even dimensional and
H2*(M; R)Φ0 for ι = l , •••, m, where 2m=άim M (see [C]).

An application of Theorem 1.2 will be given in Section 2.
Next, we give an integral inequality of which the equality occurs only

when an immersion is slant under the assumption that 62(M)=1.
Assume that M is an m-dimensional compact Kahler manifold. Let ΌVM—

{X^TPM; \X\=l}=S*m-1(ϊ) be a unit sphere in TPM and let UM^\JP^MUVM
be the unit sphere bundle over M. By (1.1), we obtain

(1.5) cos2 θxdμ= Vm% W) Σ </¥>•(*,), ¥> (β,)>'*l,
JΛE.LIM Li III JM l>J = l

where dμ is the volume form of UM. The integrand of the right hand side
of (1.5) may be rewritten as follows

2m *

(1.6) Σ <Jφ*(ej), φ*(e,)y

/V Λ/ /V /V

= Σ {ijψj, ψiXJψh φύ+ijψh ψdilψj, φi>\>
1,3 = 1

On one hand, we have

φ*ωN=\ Σ {<Jφu ψj>dzιΛdz>+2<Jφi} φj>dz%Λdz>+<Jφι, φf>dzι/\dzj).

Then, a direct computation yields

0)%

-Uψu φfXJψh φi>-<Jψu φiXJψj, φi>\,

which, together with (1.6), implies that
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(L7) ^ J >
= — φ*ωN Λφ*ω

where the last term of the right hand side of (1.7) is evaluated from the below
as follows

Σ <Jφt, ψi>\ *1 = \ Σ (ψ*O)N)(ut, U,)\ *1
M U, .7 = 1 J JM I 1=1 J

which, together with (1.5), (1.7) and the nonnegativity of the second term of
the right hand side of (1.7), implies that

(1 8 ) v o ΰ ^ (

The equality in (1.8) holds if and only if φ*ωN is of type (1, 1) and tr g ^*ωin-
constant. Thus, we have

PROPOSITION 1.3. Let φ: (M, g)—>N be an isometric immersion of a compact
Kdhler manifold with Kdhler form ωM into a Kdhler manifold N with Kdhler
form ωN. Then, we have

vol

where the equality holds if and only if φ*ωN is of type (1, 1) and trgφ^ωN=^

constant. Moreover, if b2(M)=l, then the equality holds only if φ is slant.

Remark. In the homotopy class of φ preserving the volume of M, the right
hand side of the inequality (1.8) is an invariant quantity. This observation is
made more clear by Theorem 2.1 in the next section.
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§2. Examples of slant immersions into CPN.

In this section, we give the examples of proper slant immersions of a
Kahler C-space (that is, a compact simply-connected homogeneous Kahler mani-
fold) M with b2(M)=l into a complex projective space CPN(c) of constant
holomorphic sectional curvature c.

Let φ: M—G/K-^CPN{c) be an isometric immersion. The immersion φ is
called G-equivariant if there is a continuous homomorphism p: G-+SU(N+1)
such that

φ(g-x)=p(g)φ(x) for any X G M , £ < Ξ G .

DEFINITION. Let φ: M->CPN(c) be a map from a Kahler manifold M with
H2(M; Z ) s Z . Denote by ωM and ω be the Kahler forms of M and CPN(c),
respectively. Let S be a positive generator of H2(M; Z). Then, the degree
of p is defined by

where iφ*ω~](S) is the evaluation of the cohomology class [y>*ώ] represented by
φ*ω at S.

We prove

THEOREM 2.1. Let φ: M=G/K->CPN(c) be a G-equivariant isometric im-
mersion of an m-dimensional Kahler C-space into a complex projective space with
Kahler form ω. Then, φ*ω ts of type (1, 1) and tr^ω=constant, where g is the
Kahler metric on M. Moreover, if b2(M)=l, then φ is slant with slant angle
given by

(2.1) coβ

where S is a rational curve of M which represents the generator of H2(M; Z).

Proof. Since φ*ω is invariant under the action of G, we see that tVgψ^ώ
^constant. We denote by L and 7 the Lie derivation and the covariant differ-
entiation on the tensor bundles of M, respectively. Let U, V, W be holomorphic
Killing vector fields on M. Then, since the (2, 0)-part (φ*ω)2'0 of φ*ω is in-
variant under the action of G, we have

)2 °)(y, wo
f>\V, W)

Therefore, (̂ *α>)2 ° is a holomorphic section of ® 2 T*M 1 °, where T*M1{> is the
holomorphic cotangent bundle of M. Since it is known that the first Chern
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class of a Kahler C-space M is positive, it follows from the vanishing theorem
that (^*ω)2'°=(^*ώ)° 2ΞΞθ. Moreover, if &2(M)=1, it follows from Theorem 1.2
that ψ is slant. Suppose that φ*ω=cωM> Then cos 0 = | c | . On the other hand,
we have

= c vol(S),

which yields (2.1). q. e. d.

Now, we give the examples of proper slant immersions into CPN.

Example 1. Let # J f I : CPm(c(n, l))->CPNinΛ\c) be an SU(m+l)-equivariant
full minimal isometric immersion constructed in [02], where

Note that ψitι is holomorphic if and only if /=0, ψS:tι is anti-holomorphic if and
only if ί = nf and ψ%tl is totally real if and only if n—2l. By Theorem 2.1,
φXi is slant with slant angle cos^ddegC^J.OI m/(2/(n —ί)+mή)).

Example 2. Let f%,q: CPm(c/(p+q))-^CPN(c) be an SU(m+l)-equivariant iso-
metric immersion defined by

(ZQ, ' " , Zm) >

/ t\ / ^ i aQ am_βQ _βvι
-. Λ ϊZQ "'Zm Zo '" Zm , •••

where Λ Γ = ( m + ί ) ( m + ^ ) - l , Σ?=o«t=ί, Σ?=o βv=Q and α t, j8t (O^i^m) are

nonnegative integers. Let ^ : CPm(c/(p+q))^N=CPm(c/p)xCPm(c/g) be a dia-
gonal isometric embedding defined by

g(zo> '" , z m ) = ( z 0 , •" , z m ; z O f -•-, z m ) .

Then, /5, β is the composition of the Segre embedding, (the p-th for the first
factor (zo, •••, zro) and the ^-th for the second factor (50, •••, 5TO)) Veronese em-
beddings and g (for details, see (3.1) in [MO]). Then, since deg(f™,q)=p—q,
it follows from Theorem 2.1 that /™,β is slant with slant angle
COS"1 (\p-q\Kp+q)).

Before stating the third example of proper slant immersions, we recall the
osculating space method of constructing pluriharmonic maps from complex
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manifolds into complex Grassmann manifolds ([OU]). Denote by Gk{Cn) a com-

plex Grassmann manifold of &-dimensional complex linear subspaces in Cn. A

map φ: M->Gk{Cn) is identified with the bundle ψ over M of which the fibre

φx at X(ΞM is given by φ(x), which is nothing but the pull-back of the uni-

versal bundle over Gk(Cn) by φ. Let Cn+1=MχCn+ι be the trivial bundle over

M with standard Hermitian holomorphic vector bundle structure. Then, φ is a

complex subbundle of Cn+1. We may define the second fundamental form Aψ

of φ in Qn+1 and denote by AΊιlf» its (1, 0)-part. Let Imi4fi,β> be the image of

a bundle homomorphism Λflt0^: TM1>o<g>φ~Hpx, where φ1 is the Hermitian

orthogonal complement of φ in £ n + 1 . Suppose that φ is holomorphic. Set

φo=φ and define a sequence {ψi\, inductively, by

<Pi=lmAψ

{ίΓo] for 2=1,2, ••• .

By (7.39) in [OU], each ψt defines a pluriharmonic map from M\Sψi into
Gk(ι)(Cn)> where Sφi is the singularity set of φt and k(i) is a positive integer
which depends on φt. Moreover, there is a positive integer r such that φr is
an anti-holomorphic map and each φt for i—1, •••, r—1 is neither holomorphic
nor anti-holomorphic. In case ψt is an immersion, the pluriharmonic map equa-
tion of ψι is just the same as

σ(Z, W)=0 for any Z, W^TM1'0.

Example 3. Let φ: M—G/K->CPn-\c) be a G-equivariant Kahler immer-
sion of a Kahler C-space M with ft2(M)=l. It is known by [NT] that there
are many examples of such immersions. Set φo=φ. Define a sequence {ψi} of
pluriharmonic maps as above for z=0, 1, •••, r. Then, by the G-equivariance
of φ, we see that each φt is also a G-equivariant immersion of M into Gk^(Cn)
and the induced metric by φt also defines a Kahler metric on M. Let
ft:GkC»(Cn)->CPN be a Plucker embedding and let φt^fsψii M->CPN{c).
Then, by Theorem 2.1, each φt for *=1, •••, r—1 is slant with slant angle
cos^CldegC^OI -(4π/cvol(S))), where 5 is a rational curve of M which repre-
sents a positive generator of H2(M; Z).

§ 3. Circular geodesic and slant immersion with
constant scalar curvature.

In this section, suppose that M is an n-dimensional submanifold in a non-
flat complex space form N(c) of constant holomorphic sectional curvature c
with complex structure tensor/. Let {ej ( ι = l , •••, n) be a local field of ortho-
normal frames of M.

LEMMA 3.1. L^ ψ: M->N(c) be a circular geodesic slant immertion. Assume
that the scalar curvature of M is constant. Then, ψ is totally real, or the follow-
ing holds -
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(3.1) Σ <JeJf σtJ}= Σ <Jet, σjj>=0 for ί = l , •••, n .
3=1 ; = i

where σιJ—σ(elf βj).

Proof. Let τ be the scalar curvature of M. Then, by the Gauss equation
(0.5) we have

(3.2) r = - U w ( n _ i ) + 3 2 <ket,je,A+ Σ {<σiU σjjy-<σXJί σtJ>}.

On one hand, since φ is constant isotropic, we have

(3.3) Σ i<σii9

where λ is a (non-zero) isotropic constant. It follows from (3.2), (3.3) and the
present assumptions that each of the quantities Σ J , / ^ , (fij} and Σr,;<^tι, ^ >
is constant. Using Proposition 0.1 we compute

(3.4) 0=2 Σ «$,kσ)(et, es\ στj}=c Σ <ek, Jeι}<JeJ> σtJ> ,

(3.5) 0=2 Σ <(7oσ)(β,, β,), <rw>=f Σ <e*, /β,X/e,,
i, J t,3

where k—l, •••, w. Since y> is slant, we know that

(3.6) Σ<β ; , Jeι><jeι, ek}=s2δjk for /, * = 1, •••, n ,

where cos"Ms| is a constant slant angle. Suppose that φ is not totally real,
so that sΦθ. Then, it follows from (3.4), (3.5) and (3.6) that the equation (3.1)
holds. q. e. d.

LEMMA 3.2. Let φ: M-^N(c) be as in Lemma 3.1. // ψ is not totally real,
then we have

(3.7) Σ < * » , j i > < J t , J } Σ ^
k, 3 k Δ

for i, 1=1, •••, n, where cos" 1 ^! is a constant slant angle. In particular, we

have

(3.8) ΣO**, σjj>=Ul-s2)n.
k,3 I

Proof. By Lemma 3.1, we know that Σ*</βt, o>**>=0 for i=l, ••• , n.
Differentiating this equation covariantly, and using Proposition 0.1, we compute
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/ et, (Ίeισ)(ek, ek)-Σ,<σkk,

JekXJek, jet>-Σ<eh JekXJek, e}y<eJf jet>\,
k,j J

which, together with (3.6), yields (3.7). Multiplying the both sides of (3.7) by
</βr, e{) and summing up with respect to the indices / and /, we obtain (3.8).

q. e. d.

Now, we prove

THEOREM 3.3. Let φ: M—>N(c) be a circular geodesic slant immersion. As-
sume that the scalar curvature of M is constant. Then, the second fundamental
form of φ is parallel.

Proof. Suppose that φ is not totally real. We compute ΣikR(.eιt ej)σkk by
using Lemma 3.1 and Lemma 3.2.

jσ)(ek, ek)+2σ(lejek, ek)-Σ><σkk, σjm>em}
k m

= ^\Σ><ej, Jek)jek-s2e\+Σϊ{2σ(!ejek, ek)-Σ><σkk, σjm>em}.
u v k J k m

Σ
k

At a point where 7 ^ = 0 for i, / = 1 , •••, n, we have

= 2-{ΣK^;, Jek>Jek+<ej, Jσik>Jek+<e3, jek>Jσik\ -s2σtJ

{ c i

+Έj\2σ(yeilejek, ek)-~ J}<et, Jekχjek, σjm}em-Σί<σkk> σjm>σιm\,

where we have used (3.1). Then, we obtain

(3.9)

Γ Λ/ /V IV IV Λ/ IV

= -τz Σί{<ejy Jσik>jek-<et, Jσjky]ek+<e3) Jekyjσik-(ely jekyjσjk}
Z k

£ IV IV IV IV

-•o Σ {<et, Jek><Jek, σjm>-<eJf Jekχjek, σιm>}em
Li k, 7Λ

k,m
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because στj = σji and

Ίj{σ(^βi^efik, ek)-σφβpeiek9 e*)}= Σ <R(elf es)ek, em>σmk=0 .
k k, m

On the other hand, since R has a particular form (0.4), we have

(3.10) Σ # ( e ; , ei)okk = ^<et, /e,>Σ/<r»»,

where we have used (3.1). Therefore, multiplying the both of the right hand
sides of (3.9) and (3.10) by <et, Je3y and summing up with respect to the indices
i and /, we obtain

(3.11) y s 2

Vj, Jσik>-<elf Jσjky}]ek-2s2Jσkk| Σ { Σ

— 2 Σ k k , j m y X 9 J ^ x m ,
i, j , k, m

where we have used (3.1). Then, using (3.7) and (3.11), we compute

2 k.i

c
2

= -cs2ΣΪ<σkk, σιi>
k,l

+2 Σ {Σ<σkk,jσιm>+^-(l-s2KemJeιy\<σιm,jσιι>

= = CS 2_ι\Gkky Gll}~\~2 Σ \^H> /^tm)\0>ίm) / ^ π ) >
A s , Z %, k, I, m

hence

/Q 1 O\ Γ>2/ΛΛ I Q\ 'VΛ / . sp \ Q \ΓΊ / ^ " ^ sr Γ- \ 2 <-̂  Λ

\O. *-£') ~~pΓ o \/ί ~~χ~ £ιj / i \(J k k ) GII / ^ / i \ s i (J k k y J GITΠ / ~̂" v/ »
Z ft.i i, m A

If c<0, then, by (3.8) we have s 2 = l , so that M is a Kahler submanifold. If
c>0, then, by (3.8) and (3.12) we also have s 2 = l , so that M is a Kahler sub-
manifold. Thus, we have proved that M is a totally real or a Kahler submani-
fold. Then, we see that the second fundamental form of φ is parallel, q. e. d.

COROLLARY 3.4. Let φ: M^N{c) be a circular geodesic slant immersion.
Assume that the mean curvature of φ is constant. Then, the second fundamental
form of φ is parallel.
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Proof. Let H be the mean curvature of φ. Then, H 2 = l / n 2 Σ t , / ^ ϋ , 0#>.
It follows from (3.2) and (3.3) that H is constant if and only if τ is constant.
Then, Corollary 3.4 follows from Theorem 3.3. q. e. d.

THEOREM 3.5. Let φ: M->N{c) be a circular geodesic immersion of a sur-

face. Then, the following four conditions are mutually equivalent:

(1) The mean curvature of φ zs constant,

(2) The second fundamental form of φ is parallel,

(3) The slant angle {i.e., the Kάhler angle) of ψ is constant,

(4) The scalar curvature of M is constant.

Proof. The equivalences among (2), (3) and (4) are already proved in [MU],

We only prove the equivalence between (1) and (3). Since φ is constant iso-

tropic (cf. (3.3)), (1) is equivalent to saying that

is constant. However, by Proposition 0.1 we have

c *
et{<σn, σ22>-<σί2, <r12>} = -je^d, Je2>

2 for * = 1 , 2,

hence (1) is equivalent to (3). q. e. d.
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