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SIMPLENESS AND CLOSEDNESS OF CIRCLES IN

COMPACT HEMMITIAN SYMMETRIC SPACES

By

Toshiaki Adachi, Sadahiro Maeda and SeiichiUdagawa

Abstract. We firstinterpret circlesin Riemannian Symmetric space

by Lie algebro-theoretic formalism. In particular,it is a solution of

the system of ordinary differentialequation of firstorder. We divide

circlesinto 3-types. We investigate closedness and simpleness for such

circlesin compact Hermitian symmetric spaces. Consequently, we

find many open holomorphic circles and non-simple circles.Note

that there exist no non-simple circles and no open holomorphic

circlesin compact Riemannian symmetric space of rank one.

Introduction

Geodesies in Riemannian symmetric spaces N = G/K are well-understood

and they are orbits of one parameter subgroups of the fullisometry group of N,

i.e.,are of the form exptX ■o, where Iel= T0N, o ―{K}. Every geodesic in

symmetric space is a simple curve. If N is compact, then N has a simply closed

geodesic, and moreover, if N is of rank one, all the geodesies in N are simply

closed and have the same prime period (see [H]). The concept of geodesic is

extended to higher dimensional case as totally geodesic submanifolds or minimal

submanifolds, which are studied systematically by many differentialgeometers.

However, helices have been received less attention. In particular, even circlesin

symmetric spaces are not studied in detail.Here, we mean by a circleof curvature

k a curve y{i) (parametrized by arc-length t) which satisfiesthe following

equation:

(0.1) V,y(t)=KYt and VtYt =-jcy(t)
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for some positive constant k and a field of unit vector Yt perpendicular to y(t)

along y, where V, is the covariant differentiation along y with respect to the

Riemannian connection V of TV"(see [NY]). These are precisely the curves with

non-zero parallel geodesic curvature vector. When k = 0 we can regard the

equation (0.1) as the equation for geodesies. From physical point of view, some

circles can be interpreted as a motion of a charged particle under an action of a

magnetic field (see [C] and also [A2]). We say that a circle y{t) is closed if there

exists £0(7^0) with y(to) = y(0), y(to) ― y(0) and Yto ― Yq. The minimum positive

?o with such properties is called the prime period of the closed circle. When y(t) is

an open circle, that is, a circle which is not closed, we say it is simple if it does

not have multiple points, that is, y(t＼)# y(t2) whenever t＼^ h- A closed circle y

is simple if y |[0,o^ does not have multiple points, where to denotes the prime

period of y(t). In case where TV is a complex projective space CPn, the present

authors ([AMU]) proved that every circle y in CP" (of constant holomorphic

sectional curvature 4) is a simple curve and is closed if and only if the complex

torsion 0 of y satisfies 0 = 0, or 0 = ±1; or # # 0, +1 and one of the three ratios

a/b, b/c and c/a is rational, where a,b,c (a < b < c) are non-zero real solutions

of the cubic equation A3 - (k2 + 1)A + k9 = 0, where k is the curvature of y. The

complex torsion 9 is defined by 9 = (y(t),JYt} for a circle y in a Kahler manifold

(M, /, <,≫ and 9 is independent of t. In [AM] and [A], the case where TV is a

complex hyperbolic space or a quaternionic space form is treated. Recently,

Mashimo-Tojo ([MT]) proved that any circle y(t) in a Riemannian symmetric

space TV is an orbit of a 1-parameter subgroup of the full isometry group if and

only if TV is a symmetric space of rank one or TV is a Euclidean space. In these

spaces, circles are of the form exp t{kH + X) ･ o with H e Jf, X e Ji, where Jf is

the Lie algebra of K and ^ = Jt + Ji.

In section 1, we reformulate the differential equation of circles in symmetric

spaces by using Lie algebraic theory. We take a lift of y to G and rewrite (0.1) in

terms of the Maurer-Cartan form for TV. We then derive from the rewritten

equation a system of ordinary differential equations of first order. We find it has

a solution of power series with infinite radius of convergence due to the Cauchy's

method of majorant series. We give two classes of circles, namely those classes of

the form exp t(KH + X) ■o, (H e X, X e Ji), which we call circles of the first

kind, and those of the form exp((l//c)(sin(K:?)X + (1 - cos(/c?)) Y)) ■o, (X, Y' e Ji,

[X, Y] = 0), which we call circles of the second kind.

In section 2, first of all, we define a notion of holomorphic circle (which

constitutes a subclass of the class of circle of the first kind when the ambient

space is a Hermitian symmetric space) and we prove that every circle of the first
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kind in a 2-dimensional complex quadric Q2 is necessarily a holomorphic circle

with respect to some invariant complex structure on Q2. Next, we investigate the

closedness of holomorphic circlesin complex Grassmann manifolds. We remark

that every circle of the firstkind is a simple curve. We give an answer to the

question "When is a holomorphic circleclosed in Gm(Cm+n)T＼ Consequently, we

can find closed circlesand open circlesof the same curvature, which shows that

holomorphic circlesin Gm(Cm+n) cannot be classifiedup to isometries of the

ambient space only by curvature.

Finally, we mention that the congruent classes of circles.In a complex

projective space or a complex hyperbolic space two circles with same curvature

and same complex torsion are congruent to each other under holomorphic

isometries. On the other hand, in a compact Hermitian symmetric space of rank

greater than one, there are circleswith the same curvatures and the same complex

torsions which are not congruent to each other. For example, let y{ be a circle

of curvature k which lies on a totallygeodesic submanifold RP2(c/4) in N and y2

be a circleof the second kind of the same curvature k. Note that yx is of the first

kind. Although these circleshave the same null complex torsion, they are never

congruent to each other under the isometry group of N for any k.

§1. Circles in Riemanoian Symmetric Spaces

Let N = G/K be a Riemannian symmetric space with a G-invariant Rie-

mannian metric g. We have the reductive symmetric decomposition of the Lie

algebra ^ of G as follows:

# = x + m, ＼x,M＼^jt, [jt,ji＼<=lX,

where X is the Lie algebra of K and Ji is identified with the tangent space of

N at the base point o = {K}. We denote by TXN the tangent space of TV at a

point x = g ■o e N, where g e G and by n : G ―>･N the projection which is given

by n(g) = g ■o. The map $-^ TXN given by £^> (d/dt)＼t=oexpt£･x restricts

an isomorphism Ad gJi ―>TXN. We denote the inverse map by f$x: TXA^ ―≫

K&gJi c ^. We may regard y9 as a ^-valued 1-form on AT, which is called the

Maurer-Cartan form of JV (see [BR]). We define the bundles ＼Ji＼and [jf] with

fibres, respectively, ＼Jf＼x―kAgJi and [jf]x = AdgJf at xeN, which are

subbundles of the trivialbundle N x ^ over Af. If X = (J/Jf)|?==oexp^ ･ x then

(1.1) i?je(Jr)=Adflf^r(Adflf-1^)-

where ^ : ^ ―>
^#

is the projection. Pulling the equation (1.1) back to G, we
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have

(1.2) {n*fi)g= A&g{Pjt0)

where 0 is the left-invariantMaurer-Cartan form of G.

Let y : R ―>N be a curve. There is a liftF : R ―≫G of the map y with y =

noF (such a liftalways exists globally when the domain is simply-connected). By

the equation (1.2) we have

(1.3) (y^)r = AdF(0-flt#

where a = F~l dF and a// is the ^-component of a in the decomposition a =

°C#+ <*jf-Let V be the Levi-Civita connection for (N,g). Denoting P^ : N x ^

―>[^#] the projection along pf], we have

PoV = P[Jr]odofi

(see [BR], p22). This means that the Levi-Civita connection for the Riemannian

symmetric space (N, g) is nothing but the flatdifferentiationin N x ^ followed

by projection. We have the following lemma.

Lemma 1.1. A curve y{t)parametrized by arc-length t is a circleof curvature

k(>0) if and only if the followina eauations hold:

(1.4) <

d

It

dL

It

(i)
+

U
jT

+Ki>
Proof. It follows from (1.3) that

0°V,y = P[ur]o4?(y)

= AdFo i^GH
Repeating thisprocess one more time, we have

(*)■≪c]}

(1 4) q.e.d

Here, we give some examples which satisfy the equation (1.4).

Example 1.1 (Circles of the firstkind). When y is a circle of the firstkind,

the equation (1.4) is reduced to the following equations:
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[H,X＼ = Y

[H, Y] = -X
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where y(0) = X, (V,y(O)(°) = kY under the identificationJi ^ T0N by fi.When

TV is a Riemannian symmetric space of rank one, since there is always such

H Jf for any orthonormal two vectors {X, Y} with (adi/)2 = ―1 on a plane

spanned by X and Y, it follows from the uniqueness of the solutions of ordinary

differentialequation that any circle of curvature k is of the form exp i{kH + X) ■

o (see [MT]). Since, if y(0) = y(s) for some s > 0, then y(t)= y(s +1) holds for

any t, we see that any circle of the firstkind is a simple curve. A Riemannian

homogeneous space which admits no circlesother than circlesof the firstkind is

necessarily a Riemannian symmetric space of rank one or a Euclidean space(see

[MT]).

Example 1.2 (Circles of the second kind). Choose X, Y e Ji with the prop-

erties ||X||2 = ||7||2 = 1, g(X, Y)=0 and [X, Y] = 0. We then have ^{d/dt) = 0,

aj?{d/dt) = cos(icf) ･ X + sin(/cr)･ Y. Note that ||y(0ll = ||AdF(r) ･ 0L^{d/dt)＼＼= 1.

Set L = jc(-sin(/c?) ■X + cos(ict)･ Y). We then see that the equation (1.4) holds.

In this case, y(0) = a#(d/'dt)＼t=0 = X, (V,y(f))(0) ―kY under the identification

Ji = T0N by p. Henceforth, y{t) is a circle of curvature /c(>0) by Lemma 1.1. It

is clear that y{t) is a closed curve of prime period 2ti/k. Moreover, it is easy to

see that y{t) lies on a 2-dimensional totally geodesic flat surface in N. Therefore,

if N is compact and admits a 2-dimensional flat torus as a totally geodesic

submanifold then y(t) is a non-simple curve if and only if k < y/c/n, where c

is the maximal sectional curvature of N. In particular, when N is a compact

Hermitian symmetric space of rank greater than 1 we see that TV admits infinitely

many non-simple circles.

We now explain the position of the above examples among circles in

Riemannian symmetric spaces of compact or non-compact type. In this case, we

shall assume that the Riemannian metric g is given by the Killing form B of (S.

Fix arbitrary X e Ji, and set

mi(X) = {[H,X]＼HeJtT}, m2(X) = {[H, X] ＼H e Jf, [H,[H,X]] =-X}.

It follows from g([H,X],Z) = {-1)SB(H, [X,Z]), where ^ = 0orl according as

N is of noncompact or compact type, that the orthogonal complement mf(X)

of m＼{X) in Ji with respect to g is given by

m＼{X) = {ZeJi＼＼X,Z) =0}.



V.yr = hX

Set ait = Adhtxj?. Then, differentiatingthis equation, we obtain

dh

It

, 1 till

dt

of g we have

+ [otjr, a^r]

doLjt }

dt
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Therefore, if YemiiX) then the circleis of the firstkind, and if Y emf(X)

then the circleis of the second kind. Note that m^{X) is equal to the curvature

nullity space N(X) = {ZeJi＼ g(R{X, Z)Z, X) = 0}, where R is the curvature

tensor of (N,g). Thus, the remaining class of circlesin a Riemannian symmetric

space consists of circleswhich have the property y(0) = X, (Vry(f))(0) = kY and

Y = aZ + bW with Zem{{X), Wem{{X), a2 + b2 = 1, where 0 < ＼b＼< 1, or

＼b＼― 1 and W e m＼(X)＼m2{X). We call the circle of this kind a circle of the

general kind.

An equation of the circles of curvature k in TV is now interpreted by the

following system of ordinary differentialequations of firstorder:

Theorem 1.1. Represent F as F = gh, where h: R ―> K and g has a property

that g~x{dg/di) e Ji. Then, y = noF is a circle of curvature k with initial

conditions y(0) = X, (V?y(?))(0) = kY if and only if g is a solution of the following

differential equation

(1.5) g~x-j = cos(Kt)X + sin(Ktf)Y with 0(0) = /.

Moreover, each entry of the solution g(t) is represented by the power series of t

with infiniteradius of convergence.

Proof. For F gh, we have

F-i
dF_

~di = Ad/T1 K)
Therefore,by our assumption on the choice

a.* ― Adh l(･-'!)

dt

Again by differentiatingthis equation, from Lemma 1.1,we find that y ― noF is

a circle of curvature k if and only if d2oL^/dt2 ――K2otj/.This and the initial

conditions imply that

v.ji― cos(Kt)X + sin(Kt) Y
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Since a.# = g~l(dg/dt), we have (1.5). Now, the general theory of ordinary

differentialequation implies that the solution of (1.5) always exists for all t (if

necessary, by taking the real and imaginary part of each entry we may transfer

(1.5) to the real-valued equation of the same type). Moreover, since all the

coefficientsin the right hand side of (1.5) are represented by power seriesof t with

infiniteradius of convergence, it follows from the Cauchy's method of majorant

seriesthat the solution is also represented by power seriesof t with infiniteradius

of convergence. q.e.d.

Remark. (1) For the circle of the firstkind, we take F = exp?(/ci/ + X),

g = exp t{icH + X) ･exp t(-KH) and h = exp t{icH). For the circle of the second

kind, we take F = g = exp((l/ic)sin(jct)X+ (l//c)(l - cos(Kf)) Y) and h = I.

(2) Since a differentialequation h~l(dh/dt) = ocjfalways has a solution h, we

see that g = Fh"1 always satisfiesg~l(dg/dt) e Jt for such a choice of h (cf. p69

of [KN]).

§2. When Is a Holomorphic Circle Closed In Gm{Cm+n)l

Firstof all,we review some fundamental factson the geometry of complex

Grassmann manifold. Let Gm(Cm+n) be a complex Grassmann manifold of m-

dimensional complex subspaces in Cm+n. In this case, G = SU(m + n), K =

S(U(m) x U(n)). Moreover, we have

■Hd
-A*

0

)

A is an n x m ―complex matrix >

where A * is the adjoint matrix of A and 0 is an appropriate square zero-matrix.

Let HM(m + n) be the space of all Hermitian matrices of order m + n. Define

E＼e HM(m + n) by

E'-＼o o)

Here Im is the identity matrix of order m. Define a map p : SU(m + n) ―>

HM(m + n) by p{g) ― gE＼g~l. The map /> induces an injective map

/?: SU(m + n)/S(U(m) x £/(≪))―≫HM(m + n). Since /?is an immersion at the

base point o and p is (j-equivariant, we see that p is an embedding. We give

HM(m + n) a Hermitian trace metric h with respect to which p is an isometric

embedding. If we define h by h{A, B) = (2/c) tr(AB*) for A, Be HM(m + n) then

Gm(Cm+n) with the induced metric /?*/*has a maximal sectional curvature c > 0.
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Let Hq =
v 'v " ,― be an

element of the
V 0 {mV=i/(m + n))IHJ

center of X. Then, an invariant complex structure J of Gm(Cm+n) is given by

Jo = ±ad//o at o.

In case of circles in compact Riemannian symmetric space of rank one, it

is possible to determine the closedness of the circle by solving the cubic eigen-

equation. The reason why the closedness of the circle is determined by such a

simple equation is that any circle is contained in a totally geodesic complex

submanifold CP2 (see [AMU]). On the other hand, it is not so easy to determine

the closedness of circles of the first kind even in <J2(C4). In fact, there are circles

of the first kind fully embedded in Gj(CA). For example, take

and

A

V~c

＼/28

(:: i)
B

(

)

*-G

)

c 2

We then have [H, [H, X}} = -X. Set

Y=[H,X], Z=[[X,Y},X], W=[[X,Y＼,Y],

L=[[X,Y]:Z], S=[[X,Z＼,X], T=[[X,W],X], U=[[X,Y＼,W＼.

Then, Span^jX, Y,Z, W,L,S, T, U} is an 8-dimensional subspace of Ji. Hence-

forth, a circle y(t)=expt(KH + X) o is fully embedded in (^(C4).

Therefore, we investigate the closedness of circlesin the special class,i.e.,

holomorphic circles.

Definition. A curve y(t) parametrized by arc-length tin a Kahler manifold

M is said to be a holomorphic circle of curvature k if Vty(t) = ±KJy(t), where /

is the complex structure tensor of M.

In case where M is an irreducible Hermitian symmetric space, an invariant

complex structure on M is given at o by Jo = ±ad(Ho) for some element of the

center of Jfl Thus, in this case, any holomorphic circlebelongs to the class of

circlesof the firstkind.

In case where M = Q2 = CPx{c) x CPx(c), there are two choices of Ho as

follows:
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1 0 0＼

0 0 0

0 0 0

0 0 0/

or HQ

/O 0

0 0

0 0

＼0 0

0

0

0

-1

0＼

0

1

0/
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Theorem 2.1. Any circley(t) of the first kind in Q2 is a holomorphic circle

with respect to Jo = +ad Hq for some choice of Hn e Jf. Moreover, for a circleof

curvature k with y(0) ― X =
＼A 0 )

e Ji, where A is a real square matrix of

order 2, we have the following:

(1) If rank A < 2 then y{t) lies on CPl(c) and it is a simple closed curve of

prime period 2tiJ＼Ik2+ c.

(2) If lAA = (c/8)/2 then y{t)lies on Ql = CPl(c/2) and it is a simple closed

curve of prime period 2n/＼Jk2 + c/2.

(3) Otherwise, let ol^oljbe the eigenvalues of 'AA. Then y(t)is a simple closed

curve if and only if the ratio ＼/k2+ Ao.＼/＼/k2+ 4a2 is a rational number. In this

case, the prime period is the least common integral multiple of 2n/y/K2 + 4ai and

2ti/＼/k2+ 4a2.

Proof. Any element H e X is representedby

/

H =

＼

For any X

z

/O ->A＼

u o;

0 a 0 0＼

-a 0 0 0

0 0 0 b

0 0 -b 0>

where A =
:

w J

{a,beR)

with x, v,z,w e R and x2 + y2 +

2 + w2 = c/4, if y(t)― exp tiicH + X) ･o is a circle of curvature /cthen we must

have [H, [H, X]] = ―X, which is equivalent to the following equations:

(2.1)

{ (a2 + b2)x - labw = jc, (a2 + b2)z + laby = z,

(a2 + b2)y + 2afe = y, (a2 + Z>2)w - labx = w.

The normalization ||X||2= ||[i/,X]||2means that c/4 = (c/4)(a2+b2) -4abdetA.

Therefore, if rank^ < 2 then we have a2 + b2 = 1, which, together with (2.1),

yields ab = 0. Hence ad/f is an invariant complex structure of Q2. Next suppose

that rank A = 2. It follows from (2.1) that if y2 # z2 or x2 # w2 then a2 + b2 = I

and aZ> = 0, hence ad if is an invariant complex structure. Thus, the remaining
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case is given by

y = z

x = ―w

(a + b)2 = l

or

i y

X = W

z

{a-b)2=l

because the case where y = z, x = w or y = ―z,x = ―w implies that a2 + b2 = 1

and ab = 0. However, a circlefor the remaining case is also a holomorphic circle

because we have [H, X] = ±J0X. Moreover, since lAA = (c/8)/2 the corre-

sponding circlelies on Ql. This fact and the rest of our claim follows from more

general result Theorem 2.2 below. q.e.d.

Since any compact Hermitian symmetric space of rank greater than one

admits Q2 as a totallygeodesic Kahler submanifold, we obtain the following:

Corollary 2.1. On a compact Hermitian symmetric space of rank r(>2),

there exist closed holomorphic circlesand open holomorphic circles of any given

curvature.

In the following, we determine the closedness or non-closedness of holomor-

phic circlesin Gm(Cm+n). We denote by CPn(r) an w-dimensional complex pro-

jective space of constant holomorphic sectional curvature r(>0).

Theorem 2.2.

curvature k(>0) in

Let y(t) = exp t(jcHo + X) ･ o be a holomorphic circle of

Gm(Cm+") with maximal sectional curvature c.

(1) If A*A is unitary equivalent to c/(4/)

( // 0

0 0

)

for some I (1 < / < m)

then y{t) lies on CPx{c/l) and is a simple closed curve of prime period

2n/y/K2 + c/l.

(2) In general, let ai,a2, ...,0$ be the non-zero eigenvalues of A* A which are

different from each other. Then y(t) is a simple closed curve if and only if each

ratio yjh;2 + 4a//'＼[k1 + 4a^ for j,k = 1,2,... ,s is a rational number. In this case,

the prime period is the least common integral multiple of 2n/^K2 +4aj,...,

ItiIJk1 + 4a5.

Proof. First of all,without loss of generality, we may suppose that

H0=
(

0

0

(m/im + n^V^lIn

)
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The initial tangent vector is X

matrix with tr(A*A)

'
0

iAA*A

iA*AA*

0

=
(°

= c/A. Since Jo

-A

X =

0

(

■)

･

0

iA
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where A is an n x m-complex

iA*＼
o y we have [[X,J0X],X] =

I. If A*A is unitary equivalent to c/(4/)( , then we

see that A*AA* = c/(4l)A* and g(R(X,J0X)J0X,X) = q(＼＼X,J0X],X],J0X) =

c/l Note that the prime period of circleof curvature k in CPl(cll) is equal

to 27i/y/K2 + c/L Next we show (2). Set V = kHq + X. Let P =

(uf uf ... uf ＼
(uf＼

＼ ＼ +n e U(m + n) be a unitary matrix such that each J, is
V≪f -I ■■ "L.J W/,

an eigenvector of V with eigenvalue Xj for j ― 1,2,..., m + n, where uj (resp. n7-)

is a complex m-dimensional (resp. ≪-dimensional)column vector. Then the

condition V

(2.2)

GH5)

<

leads to

t^rnf - A*uf = Xjuf
m + n ] J ] ]

mV^l_ uA f ,
mV -i

Au H ―

J m + n
Kuf = ljUjb (y=l,2,...,m + ≪)

Therefore,we obtain(A*A)uf = -(^―mV^K/im+n^j+nV^K/im+n^uf

Hence, theeigenvaluesof V consistof the set

m＼f^＼K

m + n

2

yi^P-Yk

m + n 2

(m-n I - ―＼

Denoting by <, > the usual Hermitian inner product on Cm or Cn and noting

that (uf,u?y=dji - <≪/,≪/">for 1 < j, I <m + n, we obtain by (2.2)that

<(V

These

n

A;<≪/,≪/">

V^Ik

=
(T-H.

^k+a) <≪/,≪/"> for j * /,

^
＼＼u{＼＼2= -

(x+Jl-y/ZiK＼
＼＼uf＼＼2for j = 1,2,... ,m+n.

J" ] ＼J m+n J Jm+n

I
f

imply that Xj ^ (m/(m + n))v ―Ik if and only if uj ^ 0. Moreover,

uf ＼^ 0 for i =£k then 1,-4- lv = ((m ― n)/(m 4- ≪)W-k holds. There-if <≪/,≪/> ^ 0 for j * k then A,-+ A^ = ((m - ≪)/(/w + ≫))
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fore, if (uf,u{}^0 for j^k then we must have {Xj,Xk＼ = {(V^T/2) ･

(((m - n)/{m + n))K + ^ + 4^), (y/=＼/2)({(m - n)/{m + ≪))* - y/ic2+4ad)}

for some 1 < d < s. On the other hand, the eigenvectors which correspond to the

eigenvalues {―(n/(m + ≪))＼A4/c, (-＼/―T/2)(((w - ≪)/(w + ≪))/c+ ＼A2 + 4ai),...,

(＼/^T/2)(((w ―ri)/{m + h))k + "v//c2+ 4a?)} counting with their multiplicities

form an orthonormal basis for Cm. But, since the eigenvector corresponding to

the eigenvalue (v^-T/2)(((m - n)/(m + ≪))k:- ＼Jk2 + 4a^) is orthogonal to any

vector of the basis except the eigenvector corresponding to the eigenvalue

{＼f―[/2){{{m ―n)/{m + rij)K + a//c2 +4a^), for any i/ with 1 < d < s we see that

a pair of the eigenvalues with the inner product of the corresponding eigenvectors

being non-zero must be of the form {(V―I/2)(((m ― n)/(m + n))fc + ＼/k2 +4aj),

(V^I/2)(((m - ≪)/(m + n))jc - ＼Jk2 + 4a^)}. Now, y(0) = y(/o) is equivalent to

Adexp?oF ･ EX=E＼. Set Zi = P~XEXP and A = diag(ekxt,eklt,... ,eA-+"'), where

diag(ai,d2,
■■■

,am+n) is a diagonal matrix with a＼,a2,...,am+n as the diagonal

elements. Then, we see that y(0) = y(fo) is equivalent to DtoZ＼ = Z＼Dto, which

is also equivalent to (Xj ― Xk)to e 2niZ for (uj, ≪/> # 0. This means that

＼/k-2+ 4a^?o G 27rZ for 1 < d < s, so that sJk1 + 4aj/＼/K2 + 4a^ is rational for

1 < j,k < $. In this case, the prime period is equal to the least common integral

multiple of 2ti/＼Jk2+4<xi, ...,2k/s/k2 +40,.

[A]

[A2]

[AM]

q.e.d.
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