Spectral geometry of Kaehler submanifolds of a complex projective space

By Seiichi UDAGAWA

(Received June 29, 1984)
(Revised Dec. 22, 1984)

§ 0. Introduction.

Let \(X : M \to E^N \) be an isometric immersion of a compact Riemannian manifold into an \(N \)-dimensional Euclidean space. Then \(X \) can be decomposed as \(X = \sum_{k \in \mathbb{N}} X_k \), where \(X_k \) is the \(k \)-th eigenfunction of the Laplacian of \(M \) (for details, see §2). We say that the immersion is of order \(\{k_1, k_2, k_3\} \) (resp. \(\{k_1, k_2\} \) and \(k_3 \)) if \(X = X_0 + X_{k_1} + X_{k_2} + X_{k_3} \) (resp. \(X = X_0 + X_{k_1} + X_{k_2} \) and \(X = X_0 + X_{k_3} \)), where \(X_0 \) is a constant mapping and \(X_{k_1}, X_{k_2}, X_{k_3} \neq 0 \) and \(0 < k_1 < k_2 < k_3 \).

Let \(F : \mathbb{C}P^m \to E^N \) be the standard isometric imbedding of a complex projective space into an \(N \)-dimensional Euclidean space (for details, see §1), and let \(A : M \to \mathbb{C}P^m \) be an isometric immersion of a compact Kaehler manifold into an \(m \)-dimensional complex projective space. Then \(A \) is said to be of order \(\{k_1, k_2, k_3\} \) (resp. \(\{k_1, k_3\} \) and \(k_2 \)) if the immersion \(F \circ A \) is of order \(\{k_1, k_2, k_3\} \) (resp. \(\{k_1, k_3\} \) and \(k_2 \)). A totally geodesic Kaehler submanifold of \(\mathbb{C}P^m \) is of order 1. Moreover there does not exist any compact Kaehler submanifold of order \(k_1 \geq 2 \) (see, [8], [9]), and a compact Kaehler submanifold is of order 1 if and only if it is totally geodesic. A. Ros ([2]) proved that Einstein Kaehler submanifolds with parallel second fundamental form except \(E_6/Spin(10) \times T \) in a complex projective space are of order \(\{1, 2\} \), and he characterized them by their spectra in the class of compact Kaehler submanifolds in a complex projective space. In §4, we calculate the eigenvalues of the Laplacians of \(E_6/Spin(10) \times T \) and \(E_7/E_6 \times T \). Consequently, we see that \(E_6/Spin(10) \times T \) is of order \(\{1, 2\} \), and we can say that a compact Kaehler submanifold different from a totally geodesic Kaehler submanifold in a complex projective space is of order \(\{1, 2\} \) if it is Einstein and has parallel second fundamental form (Proposition 3). Moreover we can characterize \(E_6/Spin(10) \times T \) by its spectrum in the class of compact Kaehler submanifolds in a complex projective space (Proposition 4).

Next, by applying Ros' method, we prove that \(\mathbb{C}P^n(1/3) \) and compact irreducible Hermitian symmetric spaces of rank 3 in \(\mathbb{C}P^{n+p}(1) \) are all of order \(\{1, 2, 3\} \) (Proposition 5), where \(\mathbb{C}P^n(c) \) denotes an \(m \)-dimensional complex projective space.
of holomorphic sectional curvature c.

The main result of this paper is the following.

Theorem. Let M be an n-dimensional compact Einstein Kaehler submanifold immersed in $CP^{n+p}(1)$, and let \tilde{M} be one of the Hermitian symmetric submanifolds given in Tables 2 and 3 (i.e., compact Einstein Hermitian symmetric submanifolds of degree 3).

If $\text{Spec}(M) = \text{Spec}(\tilde{M})$, then M is congruent to \tilde{M}.

The author wishes to thank Professors K. Ogiue and N. Ejiri for many valuable comments and encouragements.

§1. Preliminaries.

Let $\text{HM}(m+1) = \{A \in gl(m+1, C) \mid \bar{A} = {}^tA\}$ be the space of $(m+1)\times(m+1)$-Hermitian matrices. We define on $\text{HM}(m+1)$ an inner product g by

$$g(A, B) = 2\text{tr}AB$$

for $A, B \in \text{HM}(m+1)$.

We consider the submanifold $CP^m = \{A \in \text{HM}(m+1) \mid AA = A, \text{tr}A = 1\}$. It is known that CP^m, with the metric induced from g on $\text{HM}(m+1)$, is isometric to the complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1. The tangent space and the normal space at any point A of CP^m are given respectively by

$$T_A(CP^m) = \{X \in \text{HM}(m+1) \midXA+AX=X\},$$

$$T_A^\perp(CP^m) = \{Z \in \text{HM}(m+1) \mid ZA = AZ\}.$$

Let $D, \tilde{\nabla}, \tilde{\sigma}, \tilde{\nabla}^\perp, \tilde{\Lambda}, \tilde{H}$ be the Riemannian connection of $\text{HM}(m+1)$, the induced connection in CP^m, the second fundamental form of the immersion, the normal connection, the Weingarten endomorphism, the mean curvature vector of CP^m in $\text{HM}(m+1)$, respectively.

A. Ros [8, 9] obtained the following facts.

(1.1) $\tilde{\sigma}(X, Y) = (XY+YX)(I-2A),$

(1.2) $\tilde{\Lambda}_ZX = (XZ-ZX)(I-2A),$

(1.3) $\tilde{H} = \frac{1}{2m}[I-(m+1)A],$

(1.4) $JX = \sqrt{-1}(I-2A)X,$

(1.5) $\tilde{\sigma}(JX, JY) = \tilde{\sigma}(X, Y), \quad \tilde{\nabla}\tilde{\sigma} = 0,$

(1.6) $g(\tilde{\sigma}(X, Y), \tilde{\sigma}(V, W)) = \frac{1}{2}g(X, Y)g(V, W)+\frac{1}{4}(g(X, W)g(Y, V)$.
Spectral geometry

\[+g(X, V)g(Y, W) + g(X, JW)g(Y, JV) \]
\[+ g(X, JV)g(Y, JW) \]
\[
\tilde{\Lambda}_{\overline{\sigma}(X, Y)}V = \frac{1}{2}g(X, Y)V + \frac{1}{4}\{g(Y, V)X + g(X, V)Y + g(JY, V)JX + g(JX, V)JY\} \]

(1.7) \[g(\tilde{\sigma}(X, Y), I) = 0, \quad g(\tilde{\sigma}(X, Y), A) = -g(X, Y), \]

where \(I \) is the \((m+1)\times(m+1)\)-identity matrix, \(J \) is the complex structure of \(CP^m \), \(X, Y, V, W \in T_A(CP^m) \) and \(Z \in T^\perp_A(CP^m) \).

§ 2. The order of an immersion.

Let \(X: M^n \rightarrow E^N \) be an isometric immersion of an \(n \)-dimensional compact Riemannian manifold into the \(N \)-dimensional Euclidean space. Let \(\Delta \) be the Laplacian of \(M \) acting on differentiable functions and \(\text{Spec}(M) = \{0 < \lambda_1 = \cdots = \lambda_s < \lambda_{s+1} = \cdots\} \) be the spectrum of \(\Delta \). Then we have the orthogonal decomposition \(X = \sum_k X_k, k \in \mathbb{N} \), where \(X_k : M \rightarrow E^N \) is a differentiable mapping satisfying \(\Delta X_k = \lambda_k X_k \), and the addition is convergent, componentwise, for the \(L^2 \)-topology on \(C^\infty(M) \).

We have the relations

(2.1) \[\Delta X = -nH = \sum_{k \geq 1} \lambda_k X_k, \]
(2.2) \[\Delta^2 X = -n\Delta H = \sum_{k \geq 1} \lambda_k^2 X_k, \]
(2.3) \[\Delta^3 X = -n\Delta^2 H = \sum_{k \geq 1} \lambda_k^3 X_k, \]

where \(H \) is the mean curvature vector of \(M \) in \(E^N \).

Let \(k_1, k_2, k_3 \in \mathbb{N} \) with \(0 < k_1 < k_2 < k_3 \). We say that the immersion \(X \) is of order \(k_1 \) (resp. \(k_1, k_2 \)) and \(\{k_1, k_2, k_3\} \) if \(X = X_0 + X_{k_1} \) (resp. \(X_0 + X_{k_1} + X_{k_2} \) and \(X_0 + X_{k_1} + X_{k_2} + X_{k_3} \)) and \(X_{k_1}, X_{k_2}, X_{k_3} \neq 0 \).

§ 3. Kaehler submanifolds.

Let \(M^n \) be an \(n \)-dimensional compact Kaehler submanifold immersed in the \((n+p)\)-dimensional complex projective space \(CP^{n+p} \), and let \(A : M^n \rightarrow CP^{n+p} \) be the immersion. Let \(E_1, \ldots, E_n, E_1 = JE_1, \ldots, E_n = JE_n, \xi_1, \ldots, \xi_p, \xi_1 = J\xi_1, \ldots, \xi_p = J\xi_p \) be a local field of orthonormal frames of \(CP^{n+p} \), such that, restricted to \(M \), \(E_1, \ldots, E_n, E_1, \ldots, E_n \) are tangent to \(M \). Let \(\nabla, \sigma, \nabla^\perp \) and \(A \) be the Riemannian connection, the second fundamental form, the normal connection
and the Weingarten endomorphism of M in CP^{n+p} respectively, and H the mean curvature vector of M in $HM(n+p+1)$.

Throughout this paper, we use the following convention on the range of indices: $i, j, k, l, \cdots = 1, \cdots, n, 1^*, \cdots, n^*, \lambda, \mu, \cdots = 1, \cdots, p, 1^*, \cdots, p^*, A, B, C, \cdots = 1, \cdots, n, n+1, \cdots, n+p, a, b, c, \cdots = 1, \cdots, n, \alpha, \beta, \gamma, \cdots = 1, \cdots, p$. Then, the immersion X is of order k_1 if and only if M^n is totally geodesic and the immersion X is of order $\{k_1, k_2\}$ if and only if

\begin{equation}
\Delta H = (\lambda_{k_1} + \lambda_{k_2})H + \frac{\lambda_{k_1}\lambda_{k_2}}{2n}(X - X_0)
\end{equation}

(see [9], and in the same way as in p. 440 of [9]) we can see that the immersion X is of order $\{k_1, k_2, k_3\}$ if and only if

\begin{equation}
\Delta^2 H = (\lambda_{k_1} + \lambda_{k_2} + \lambda_{k_3})\Delta H - (\lambda_{k_1}\lambda_{k_2} + \lambda_{k_2}\lambda_{k_3} + \lambda_{k_3}\lambda_{k_1})H - \frac{\lambda_{k_1}\lambda_{k_2}\lambda_{k_3}}{2n}(X - X_0).
\end{equation}

We prepare the following Lemma.

Lemma 1 (A. Ros [9]).

\begin{equation}
H = \frac{1}{2n} \sum \bar{\theta}(E_i, E_i),
\end{equation}

\begin{equation}
\Delta H = (n+1)H + \frac{1}{n} \sum \bar{\theta}(\Lambda_{\sigma(E_i, E_j)}E_i, E_j)
\end{equation}

\begin{equation}
- \frac{1}{n} \sum \bar{\theta}(\sigma(E_i, E_j), \sigma(E_i, E_j)).
\end{equation}

This is obtained by using (1.7) and the fact that M is minimal in CP^{n+p} and that CP^{n+p} has parallel second fundamental form.

The normal space of M in CP^{n+p} at x is denoted by $T^\perp_x(M)$. We define the tensor $T: T^\perp_x \times T^\perp_x \rightarrow R$ by

\begin{equation}
T(\xi, \eta) = tr A_\xi A_\eta \quad \text{for all } \xi, \eta \in T^\perp_x(M).
\end{equation}

Then, A. Ros [9] obtained the following result.

Proposition 1. Let M be an n-dimensional compact Kaehler submanifold in CP^{n+p} such that the immersion $A: M \rightarrow CP^{n+p}$ is full. Then M is a submanifold of order $\{k_1, k_2\}$ in $HM(n+p+1)$ if and only if M is an Einstein submanifold with $T = kg|_{T^\perp \times T^\perp}$ for some real number k.

If the immersion is full, the constant part X_0 of X is given by $X_0 = (1/(n+p+1))I$ (see [9]), where I is the $(n+p+1) \times (n+p+1)$-identity matrix.

Let (G, K) be a Riemannian symmetric pair. Let g and \mathfrak{f} be the Lie alge-
bras of G and K, respectively. Then we have the canonical decomposition $g = t + m$. Let a be a Cartan subalgebra of (G, K), i.e., a maximal Abelian subalgebra of g contained in m, and let t be a maximal Abelian subalgebra of g containing a. Then we have the direct sum decomposition $t = a + b$. We define the involution S by

$$S(H_1 + H_2) = -H_1 + H_2, \quad H_1 \in b, \quad H_2 \in a,$$

and define \overline{H} by

$$\overline{H} = \frac{1}{2}(H + S(H)), \quad H \in t.$$

Let $\Sigma(G)$ be the set of all roots of G with respect to t, and define $\Sigma_0(G), \Sigma(G, K), \Sigma^+(G, K)$ by

$$\Sigma_0(G) = \Sigma(G) \cap b, \quad \Sigma(G, K) = \{ \alpha \in \Sigma(G) - \Sigma_0(G) \},$$

$$\Sigma^+(G, K) = \{ \gamma \in \Sigma(G, K) ; \gamma > 0 \},$$

respectively. Next, we define $\Gamma(G), Z(G), D(G), \Gamma(G, K), Z(G, K), D(G, K)$ by

$$\Gamma(G) = \{ H \in t ; \exp H = e \in T \},$$

$$Z(G) = \{ \lambda \in t ; (\lambda, H) \in Z \text{ for all } H \in \Gamma(G) \},$$

$$D(G) = \{ \lambda \in Z(G) ; (\lambda, H) \geq 0 \},$$

$$\Gamma(G, K) = \{ H \in a ; \exp H \in K \},$$

$$Z(G, K) = \{ \lambda \in a ; (\lambda, H) \in Z \text{ for all } H \in \Gamma(G, K) \},$$

$$D(G, K) = \{ \lambda \in Z(G, K) ; (\lambda, \gamma) \geq 0 \text{ for all } \gamma \in \Sigma^+(G, K) \},$$

respectively, where T is the maximal torus generated by t, and e is the identity, and $(,)$ is the inner product on t.

Let $\Pi(G) = \{ \alpha_1, \cdots, \alpha_l \}$ be the fundamental root system, and let N_1, \cdots, N_l be the fundamental weights of g defined by

$$\frac{2(N_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij} \quad \text{for } N_i \in t,$$

where $l = \text{rank}(G)$. Let M_i be the fundamental weights of (g, t) defined by

$$M_i = \begin{cases} 2N_i, & \text{if } p\alpha_i = \alpha_i, \quad (\alpha_i, \Pi_0(G)) = \{0\} \\ N_i, & \text{if } p\alpha_i = \alpha_i, \quad (\alpha_i, \Pi_0(G)) \neq \{0\} \\ N_i + N_j, & \text{if } p\alpha_i = \alpha_j, \quad \alpha_i \neq \alpha_j, \end{cases}$$

where $\Pi_0(G) = \Pi(G) \cap \Sigma_0(G)$ and p is the Satake involution. We put $\delta(G) = \sum_i N_i$.

We review the following facts (see [12]).

FACT 1. Let (G, K) be a compact symmetric pair such that G/K is simply-
connected. Then
\[D(G, K) = \left\{ \sum_{i=1}^{l} m_i M_i \mid m_i \in \mathbb{Z}, m_i \geq 0 \ (1 \leq i \leq l) \right\}. \]

FACT 2. Let \(\rho \) be a spherical representation of \(G \) with respect to \(K \). Then the highest weight \(\lambda(\rho) \) of \(\rho \) with respect to \(t \) belongs to \(D(G, K) \).

FACT 3. The mapping \(\rho \mapsto \lambda(\rho) \) is bijective.

Now we can compute the eigenvalues of \(\Delta \) for \(E_6/\text{Spin}(10) \times T \) and \(E_7/E_6 \times T \).

i) \(E_6/\text{Spin}(10) \times T \): We put \(G = E_6 \) and \(K = \text{Spin}(10) \times T \). The fundamental roots are given by (see [2])
\[
\alpha_1 = \frac{1}{2}(e_1 + e_8) - \frac{1}{2}(e_2 + \cdots + e_7), \quad \alpha_2 = e_1 + e_2, \\
\alpha_3 = e_2 - e_1, \quad \alpha_4 = e_3 - e_2, \quad \alpha_5 = e_4 - e_3, \quad \alpha_6 = e_5 - e_4.
\]
where \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^8 \) for \(i = 1, \ldots, 8 \). The fundamental weights of \(\mathfrak{g} \) are given by
\[
N_1 = \frac{2}{3}(e_6 - e_1 - e_8), \\
N_2 = \frac{1}{2}(e_1 + e_2 + e_3 + e_4 + e_6 - e_7 + e_8), \\
N_3 = \frac{5}{6}(e_6 - e_1 - e_8) + \frac{1}{2}(-e_1 + e_2 + e_3 + e_4 + e_6), \\
N_4 = e_3 + e_4 + e_5 + e_6 - e_7 + e_8, \\
N_5 = \frac{2}{3}(e_6 - e_1 - e_8) + e_4 + e_5, \\
N_6 = \frac{1}{3}(e_6 - e_1 - e_8) + e_5, \\
\]
and
\[
\delta(G) = \sum_i N_i = e_2 + 2e_3 + 3e_4 + 4e_5 + 4(e_6 - e_7 - e_8).
\]
From diagram 1, the fundamental weights of $(\mathfrak{g}, \mathfrak{t})$ are given by

\[M_1 = N_1 + N_2 = e_6 - e_7 - e_8 + e_8, \]
\[M_2 = N_2 = \frac{1}{2} (e_1 + e_2 + e_3 + e_4 + e_5 - e_6 - e_7 + e_8). \]

It follows from Facts 1, 2 and 3 that $\lambda(\rho) = m_1 M_1 + m_2 M_2$. Therefore the Freudenthal's formula implies that the eigenvalue A_ρ of the Casimir operator of an irreducible representation ρ is given by

\[A_\rho = \frac{1}{2} (\lambda(\rho) + 2\delta(G), \lambda(\rho)) \]
\[= 2m_1(m_1 + m_2 + 8) + m_2(m_2 + 11). \]

Since the eigenvalues $0 < \lambda_1 < \lambda_2 < \cdots$ of Δ are given by A_ρ's, we see that

\[\lambda_1 = 12 \quad (m_1 = 0, m_2 = 1), \]
\[\lambda_2 = 18 \quad (m_1 = 1, m_2 = 0). \]

ii) $E_7/E_6 \times T$: We put $G = E_7$ and $K = E_6 \times T$. The fundamental roots are given by

\[\alpha_1 = \frac{1}{2} (e_1 + e_8) - \frac{1}{2} (e_2 + e_3 + e_4 + e_5 + e_6 + e_7), \]
\[\alpha_2 = e_1 + e_2, \quad \alpha_3 = e_2 - e_1, \quad \alpha_4 = e_3 - e_2, \]
\[\alpha_5 = e_4 - e_3, \quad \alpha_6 = e_5 - e_4, \quad \alpha_7 = e_6 - e_5. \]

The fundamental weights of \mathfrak{g} are given by

\[N_1 = e_8 - e_7, \]
\[N_2 = \frac{1}{2} (e_1 + e_2 + e_3 + e_4 + e_5 + e_6 - 2e_7 + 2e_8), \]
\[N_3 = \frac{1}{2} (-e_1 + e_2 + e_3 + e_4 + e_5 + e_6 - 3e_7 + 3e_8), \]
\[N_4 = e_3 + e_4 + e_5 + e_6 + 2(e_8 - e_7), \]
\[N_5 = \frac{1}{2} (2e_1 + 2e_2 + 2e_3 + 2e_4 + 2e_5 - 3e_6), \]
\[N_6 = e_5 + e_6 - e_7 + e_8, \]
\[N_7 = e_6 + \frac{1}{2} (e_8 - e_7), \]

and

\[2\delta(G) = 2e_2 + 4e_3 + 6e_4 + 8e_5 + 10e_6 - 17e_7 + 17e_8. \]
S. Udagawa

Diagram 2.

From diagram 2, the fundamental weights of \((g, f)\) are given by

\[
\begin{align*}
M_1 &= N_1 = e_8 - e_7, \\
M_6 &= N_6 = e_5 + e_6 - e_7 + e_8, \\
M_7 &= 2N_7 = 2e_6 + e_8 - e_7.
\end{align*}
\]

Hence the highest weight is given by

\[
\lambda(\rho) = m_1M_1 + m_2M_6 + m_3M_7
\]

where \(m_1, m_2, m_3 \in \mathbb{Z}, \ m_1, m_2, m_3 \geq 0\). Therefore the Freudenthal's formula implies that

\[
A_\rho = \frac{1}{2}(\lambda(\rho) + 2\delta(G), \lambda(\rho)) = m_1^2 + 2m_2^2 + 3m_3^2 + 2m_1m_2 + 4m_2m_3 + 2m_3m_1 + 17m_1 + 26m_2 + 27m_3.
\]

Thus we see that the eigenvalues \(0 < \lambda_1 < \lambda_2 < \cdots\) of \(\Delta\) are given by

\[
\begin{align*}
\lambda_1 &= 18 \quad (m_1=1, \ m_2=m_3=0), \\
\lambda_2 &= 28 \quad (m_1=m_3=0, \ m_2=1), \\
\lambda_3 &= 30 \quad (m_1=m_2=0, \ m_3=1),
\end{align*}
\]

\[\cdots\]

§ 5. Spectral geometry for Kaehler submanifolds I.

First we state the following.

Lemma 2 ([9]).

\[
\begin{align*}
(5.1) \quad & g(A, A) = 2, \\
(5.2) \quad & g(A, H) = -1, \\
(5.3) \quad & g(A, \Delta H) = -(n+1), \\
(5.4) \quad & g(H, H) = \frac{n+1}{2n}, \\
(5.5) \quad & g(H, \Delta H) = \frac{(n+1)^2}{2n} + \frac{1}{2n^2} \|\sigma\|^2, \\
(5.6) \quad & g(\Delta H, \Delta H) = \frac{(n+1)^3}{2n} + \frac{n+1}{n^2} \|\sigma\|^2 + \frac{1}{n^2} \|T\|^2 + \frac{1}{n^2} \text{tr}(\sum \lambda \Lambda_{\lambda}^2)^2,
\end{align*}
\]
where \(\Lambda_\lambda = \Lambda_{\xi_\lambda} \).

Note that \(\int_M g(X_r, X_s) = 0 \) for \(r \neq s \), and put \(a_k = \int_M g(X_k, X_k) \). Then from (2.1) and (2.2) we have

\[-2n \int_M g(X, H) = \sum_{k \geq 1} \lambda_k a_k,\]
\[4n^2 \int_M g(H, H) = \sum_{k \geq 1} \lambda_k^2 a_k,\]
\[4n^2 \int_M g(H, \Delta H) = \sum_{k \geq 1} \lambda_k^3 a_k,\]
\[4n^2 \int_M g(\Delta H, \Delta H) = \sum_{k \geq 1} \lambda_k^4 a_k.\]

We put

\[\Phi_1 = 4n^2 \int_M g(H, H) + 2n \lambda_1 \int_M g(X, H),\]
\[\Phi_2 = 4n^2 \int_M g(H, \Delta H) - 4n^2 \lambda_1 \int_M g(H, H),\]
\[\Phi_3 = 4n^2 \int_M g(\Delta H, \Delta H) - 4n^2 \lambda_1 \int_M g(H, \Delta H),\]
\[\Phi_4 = 4n^2 \int_M g(\Delta H, \Delta H) - 4n^2 (\lambda_1 + \lambda_2) \int_M g(H, \Delta H) + 4n^2 \lambda_1 \lambda_2 \int_M g(H, H),\]
\[\Phi_5 = 4n^2 \int_M g(\Delta H, \Delta H) - 4n^2 (\lambda_1 + \lambda_2 + \lambda_3) \int_M g(H, \Delta H) + 4n^2 (\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1) \int_M g(H, H) + 2n \lambda_1 \lambda_2 \lambda_3 \int_M g(X, H).\]

Then we get

(5.7) \(\Phi_1 = \sum_{k \geq 2} \lambda_k (\lambda_k - \lambda_1) a_k \geq 0, \)
(5.8) \(\Phi_2 = \sum_{k \geq 2} \lambda_k^2 (\lambda_k - \lambda_1) a_k \geq 0, \)
(5.9) \(\Phi_3 = \sum_{k \geq 2} \lambda_k^3 (\lambda_k - \lambda_1) a_k \geq 0, \)
(5.10) \(\Phi_4 = \Phi_3 - \lambda_2 \Phi_2 = \sum_{k \geq 2} \lambda_k^2 (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) a_k \geq 0, \)
(5.11) \(\Phi_5 = \Phi_4 - \lambda_3 (\Phi_2 - \lambda_2 \Phi_1) = \sum_{k \geq 3} \lambda_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2)(\lambda_k - \lambda_3) a_k \geq 0. \)

We put

(5.12) \(\Phi_6 = \Phi_2 - \lambda_2 \Phi_1 = \sum_{k \geq 2} \lambda_k (\lambda_k - \lambda_2)(\lambda_k - \lambda_1) a_k \geq 0. \)

The equality in (5.7) holds if and only if the immersion is of order 1, the
equality in [5.12] holds if and only if the immersion is of order 1 or \{1, 2\}, and the equality in [5.11] holds if and only if the immersion is of order 1 or \{1, 2\} or \{1, 3\} or \{2, 3\} or \{1, 2, 3\}.

Thus we have

Proposition 2 (N. Ejiri, A. Ros, see [9]). Let \(M \) be an \(n \)-dimensional compact Kaehler submanifold immersed in \(CP^m \). Then

\[
\lambda_1 \leq n+1.
\]

The equality holds if and only if \(M \) is totally geodesic (that is, of order 1).

Proposition 3. Let \(M \) be an \(n \)-dimensional compact Kaehler submanifold immersed in \(CP^m \).

If \(\lambda_1 = \frac{\tau}{\langle \text{vol}(M) \rangle} \) and \(M \) is not totally geodesic, then

\[
\lambda_2 \leq n+2.
\]

The equality holds if and only if \(M \) is Einstein and the second fundamental form of the immersion is parallel (that is, of order \{1, 2\}).

Proof. In Corollary 5.4 in [9], under the same assumptions as Proposition 3, it is proved that \(\lambda_2 \leq n+2 \) and the equality holds only if \(M \) is Einstein and the second fundamental form of the immersion is parallel. Hence it is enough to prove that if \(M \) is an Einstein parallel submanifold, then \(\lambda_2 = n+2 \). But, from Theorem 7.4 in [6], all Einstein parallel submanifolds are listed in Table 1, which, together with the result obtained in \S 4, shows that \(\lambda_2 = n+2 \). Using Lemma 2 and (5.12) we see that \(\lambda_2 = n+2 \) if and only if the equality in (5.12) holds since \(M \) is not totally geodesic. But since the equality in (5.12) holds if and only if \(M \) is of order \{1, 2\}, the proof of Proposition 3 is accomplished.

Table 1. Einstein Kaehler submanifolds of degree 2.

<table>
<thead>
<tr>
<th>Submanifold</th>
<th>dim(_c)</th>
<th>(p)</th>
<th>(\tau)</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1 = CP^n(1/2))</td>
<td>(n)</td>
<td>(n(n+1)/2)</td>
<td>(n(n+1)/2)</td>
<td>((n+1)/2)</td>
<td>(n+2)</td>
</tr>
<tr>
<td>(M_2 = Q^n)</td>
<td>(n)</td>
<td>(1)</td>
<td>(n^2)</td>
<td>(n)</td>
<td>(n+2)</td>
</tr>
<tr>
<td>(M_3 = CP^n \times CP^n)</td>
<td>(2n)</td>
<td>(n^2)</td>
<td>(2n(n+1))</td>
<td>(n+1)</td>
<td>(2n+2)</td>
</tr>
<tr>
<td>(M_4 = U(s+2)/U(2) \times U(s))</td>
<td>(s \geq 3)</td>
<td>(2s)</td>
<td>(s(s+1)/2)</td>
<td>(s+2)</td>
<td>(2s+2)</td>
</tr>
<tr>
<td>(M_5 = SO(10)/U(5))</td>
<td>10</td>
<td>5</td>
<td>80</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>(M_6 = E_6/Spin(10) \times T)</td>
<td>16</td>
<td>10</td>
<td>192</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>
Since dimension, $\text{vol}(M)$, and $\int_M \tau$ are spectral invariants, from Proposition 3 and Table 1, we have

PROPOSITION 4. Let M be an n-dimensional compact Kaehler submanifold immersed in CP^m. If $\text{Spec}(M)=\text{Spec}(M_i)$ for some $i=1, \cdots, 6$, then M is congruent to the standard imbedding of M_i, where M_i is one of the Hermitian symmetric spaces given in Table 1.

REMARK. Proposition 4 for $i=1, \cdots, 5$ is obtained in [9].

The following formulas are well-known (for example, see [7], [9]),

(5.13) $\tau = n(n+1)-\|\sigma\|^2$,

(5.14) $\|S\|^2 = \frac{1}{2}n(n+1)-\|\sigma\|^2+\text{tr}(\sum_\lambda \Lambda_\lambda^2)^2$,

(5.15) $\|R\|^2 = 2n(n+1)-4\|\sigma\|^2+2\|T\|^2$,

(5.16) $-\frac{1}{2}\Delta\|\sigma\|^2 = \|\nabla\sigma\|^2 + \frac{n^2+2}{2}\|\sigma\|^2 - 2\text{tr}(\sum_\lambda \Lambda_\lambda^2)^2 - \|T\|^2$,

(5.17) $\frac{n(n+1)}{2}\|R\|^2 \geq 2n\|S\|^2 \geq \tau^2$.

The first equality in (5.17) holds if and only if M has constant holomorphic sectional curvature, and the second equality in (5.17) holds if and only if M is Einstein.

From (5.13), (5.14) and (5.17), we have

(5.18) $\text{tr}(\sum_\lambda \Lambda_\lambda^2)^2 \geq \frac{1}{2n}\|\sigma\|^4$.

The equality holds if and only if M is Einstein.

LEMMA 3. Let M be an n-dimensional compact Kaehler submanifold immersed in CP^m with the following properties:

i) $\lambda_1 = \frac{\int_M \tau}{n\text{vol}(M)}$,

ii) $\lambda_2 = \frac{(n+3)\lambda_1 - \int_M (\|R\|^2+2\|S\|^2)/(n\text{vol}(M))}{n+1-\lambda_1} + \lambda_1$,

iii) $\nabla\sigma \neq 0$.

Then

$\lambda_3 \leq n+3$.

The equality holds only if the immersion is of order $\{1, 3\}$ or $\{2, 3\}$ or $\{1, 2, 3\}$. Moreover, $\lambda_1, \lambda_2, \lambda_3$ and $\|\sigma\|^2$ are given as follows: For the case of order $\{1, 3\}$,
\[
\lambda_1 = \frac{n(n+p+1)-p}{n+2p}, \quad \lambda_2 = n+1, \quad \lambda_3 = n+3.
\]

(5.19)

\[
\|\sigma\|^2 = \frac{np(n+3)}{n+2p},
\]

and, for the case of order \{2, 3\},

\[
\lambda_1 = \frac{2n(n+1)+p(n-3)}{2n+3p}, \quad \lambda_2 = \frac{2n(n+p+1)}{2n+3p}, \quad \lambda_3 = n+3.
\]

(5.20)

\[
\|\sigma\|^2 = \frac{2np(n+3)}{2n+3p},
\]

where \(p\) is the full codimension.

PROOF. Using Lemma 2, (5.13), (5.14) and (5.15), we have

\[
\Phi_5 = 2n \text{vol}(M)((n+1)(n+2)(n+3)-(n+1)(n+2)(\lambda_1+\lambda_2+\lambda_3)
\]

\[
+(n+1)(\lambda_1\lambda_2+\lambda_2\lambda_3+\lambda_3\lambda_1)-\lambda_1\lambda_2\lambda_3)
\]

\[
+2(\lambda_1+\lambda_2+\lambda_3-4n-8)\int_M \tau + 2\int_M (\|R\|^2 + 2\|S\|^2).
\]

From the assumptions i) and ii), we get

\[
\Phi_5 = 2n \text{vol}(M)(n+1-\lambda_1)(n+2-\lambda_2)(n+3-\lambda_3).
\]

From the assumption iii), Proposition 2, Proposition 3 and (5.11), we have

\[
\lambda_3 \leq n+3.
\]

If the immersion is of order \(\{k_1, k_2\}\), then the following holds (see [9]):

\[
\lambda_{k_1} + \lambda_{k_2} = n+1 + \frac{(n+p)\|\sigma\|^2}{np}.
\]

(5.21)

It follows from Proposition 1 that \(M\) is an Einstein Kaehler submanifold with \(T=kg\). Hence we obtain

\[
\lambda_1 = \frac{\tau}{n} = \frac{n(n+1)-\|\sigma\|^2}{n}.
\]

(5.22)

Since \(\|T\|^2 = \|\sigma\|^4/2p\) (see [9]), from (5.14), (5.15) and (5.18), we have

\[
\int_M (\|R\|^2 + 2\|S\|^2)
\]

\[
\text{vol}(M) = (n+1)(n+3) - \frac{2(n+3)\|\sigma\|^2}{n} + \frac{(n+p)\|\sigma\|^4}{n^2p}.
\]

(5.23)

From (5.21), (5.22), (5.23) and \(\lambda_3 = n+3\), we have (5.19) for the case of order \{1, 3\}, and (5.20) for the case of order \{2, 3\}. Q.E.D.
§6. Spectral geometry for Kaehler submanifolds II.

In this section, we investigate the order of $CP^{n}(1/3)$ and compact irreducible Hermitian symmetric spaces of rank 3. We choose a local field of unitary frames $\{e_1, \cdots, e_n, e_{n+1}, \cdots, e_{n+p}\}$ on CP^{n+p} in such a way that, restricted to M^n, e_1, \cdots, e_n are tangent to M^n. With respect to the frame field on CP^{n+p}, let $\{\omega^1, \cdots, \omega^n, \omega^{n+1}, \cdots, \omega^{n+p}\}$ be the field of dual frames. Then the Kaehler metric of CP^{n+p} is given by $\Sigma_{A=1}^{n+p} \omega^A \cdot \overline{\omega}^A$ and the structure equations of CP^{n+p} are given by

\begin{align}
(6.1) \quad & d\omega^A + \sum_B \omega_B^A \wedge \omega^B = 0, \quad \omega^A + \overline{\omega}^A = 0, \\
(6.2) \quad & d\omega^A + \sum_B \omega_B^A \wedge \omega^B = \tilde{\Omega}_B^A, \quad \tilde{\Omega}_B^A = \sum_{C,D} R_{BC\overline{D}}^{A} \omega^C \wedge \overline{\omega}^D.
\end{align}

Since CP^{n+p} is a complex space form of constant holomorphic sectional curvature 1, we have

\begin{equation}
R_{BC\overline{D}}^{A} = \frac{1}{4} (\delta_{B}^{A} \delta_{CD} + \delta_{C}^{A} \delta_{BD}).
\end{equation}

Restricting these forms to M^n, we have

\begin{equation}
(6.3) \quad \omega^a = 0,
\end{equation}

and the Kaehler metric g of M^n is given by $g = \sum_a \omega^a \cdot \overline{\omega}^a$. Moreover we obtain

\begin{align}
(6.5) \quad & \Omega_B^A = \sum_{c,d} R_{BC\overline{D}}^{A} \omega^C \wedge \overline{\omega}^D, \\
(6.6) \quad & d\omega^a + \sum_b \omega_b^a \wedge \omega^b = 0, \quad \omega^a + \overline{\omega}^a = 0, \\
(6.7) \quad & d\omega^a + \sum_c \omega_c^a \wedge \omega^c = \Omega_B^a, \quad \Omega_B^a = \sum_{c,d} R_{BC\overline{D}}^{a} \omega^C \wedge \overline{\omega}^D, \\
(6.8) \quad & d\omega^a + \sum_{c,d} \omega_c^a \wedge \omega^d = \Omega_B^a, \quad \Omega_B^a = \sum_{c,d} R_{BC\overline{D}}^{a} \omega^C \wedge \overline{\omega}^D.
\end{align}

From (6.5) and (6.7), we have the equation of Gauss

\begin{equation}
(6.9) \quad R_{Bcd}^a = \frac{1}{4} (\delta_b^a \delta_{cd} + \delta_{cd} \delta_{ba}) - \sum_{c,d} k_{ac}^b \overline{k}_{ad}^a,
\end{equation}

and from (6.5) (6.6) and (6.8), we have

\begin{equation}
(6.10) \quad R_{c\overline{d}}^a = \frac{1}{4} \delta_{c\overline{d}}^a \delta_{ba} + \sum_{a,c,d} k_{ac}^b \overline{k}_{ad}^a.
\end{equation}

The Ricci tensor $S_{c\overline{d}}$ and the scalar curvature τ of M^n are given by

\begin{align}
(6.11) \quad & S_{c\overline{d}} = \frac{n+1}{2} \delta_{c\overline{d}} - 2 \sum_{a,c,d} k_{ac}^b \overline{k}_{ad}^a, \\
(6.12) \quad & \tau = n(n+1) - 4 \sum_{a,c,d} k_{ac}^b \overline{k}_{ad}^a.
\end{align}
Now, we define the covariant derivatives k_{abc}^α and $k_{ab\overline{c}}^\alpha$ of k_{ab}^α by
\[
\sum_c k_{abc}^\alpha \omega_c + \sum_c k_{ab\overline{c}}^\alpha \overline{\omega}_c = dk_{ab}^\alpha - \sum_c k_{cb}^\alpha \omega_a^c - \sum_c k_{ac}^\alpha \omega_b^c + \sum_\beta k_{\beta ab}^\alpha \omega_\beta^\alpha.
\]

Then we have
\[(k_{a_1\ldots a_m}^\alpha)_{b} = k_{a_1\ldots a_m b}^\alpha \quad \text{and} \quad (k_{a_1\ldots a_m}^\alpha)_{\overline{b}} = k_{a_1\ldots a_m \overline{b}}^\alpha. \]

We see that $k_{a_1\ldots a_m}^\alpha$ is symmetric with respect to a_1, \ldots, a_m. The following formula is proved in [6]:

Lemma 4.
\[
k_{a_1\ldots a_m b}^\alpha = \frac{m-2}{4} \sum_{r=1}^m k_{a_1\ldots \hat{a}_r\ldots a_m}^\alpha \delta_{a_r b} - \sum_{r=1}^{m-2} \frac{1}{r!(m-r)!} \sum_{\sigma, \beta, c} k_{ca_{\sigma(1)}\ldots a_{\sigma(\gamma)}}^\alpha k_{a_{\sigma(\tau+1)}\ldots a_{\sigma(m)}}^\beta \overline{k}_{cb}^\beta,
\]
for $m \geqslant 3$, where the summation on σ is taken over all permutations of $(1, \ldots, m)$.

Let $T_x(M)$ be the tangent space to M at x and $T_x^\mathbb{C}(M)$ its complexification. Let $T_x^{\mathbb{C},0}(M) = \{X - \sqrt{-1}JX \mid X \in T_x(M)\}$ and $T_x^{\mathbb{C},1}(M) = \{X + \sqrt{-1}JX \mid X \in T_x(M)\}$. Then
\[
T_x^\mathbb{C}(M) = T_x^{\mathbb{C},0}(M) + T_x^{\mathbb{C},1}(M).
\]

The similar results hold for CP^{n+p}. Suppose that the relation between e_A and E_A is given by
\[
e_A = \frac{1}{2} (E_A - \sqrt{-1} E_A), \quad \overline{e_A} = \frac{1}{2} (E_A + \sqrt{-1} E_A).
\]

Then, the relation between h_{ab}^α and k_{ab}^α is given by (see [7])
\[
k_{ab}^\alpha = h_{ab}^\alpha - \sqrt{-1} h_{ab\overline{c}}^\overline{c}, \quad \overline{k}_{ab}^\alpha = h_{ab}^\alpha + \sqrt{-1} h_{ab\overline{c}}^\overline{c}.
\]

Moreover we can see that
\[
k_{abc}^\alpha = h_{abc}^\alpha - \sqrt{-1} h_{abc\overline{c}}^\overline{c}, \quad \overline{k}_{abc}^\alpha = h_{abc}^\alpha + \sqrt{-1} h_{abc\overline{c}}^\overline{c}.
\]

Thus we have
\[\|\sigma\|^2 = \sum_{i,t,j} h_{ij}^t h_{ij}^t = 4 \sum_{a,b} k_a^\sigma \bar{k}_b^\sigma, \]

(6.17)

\[\|T\|^2 = \sum_{i,p,k,l} h_{ij}^t h_{i}^p h_{kl}^t h_{kl}^t = 8 \sum_{\alpha,\beta,a,b,c,d} k_{a\beta}^\alpha \bar{k}_{b\alpha}^\beta k_{c\beta}^\beta \bar{k}_{d\alpha}^\alpha, \]

\[\|\nabla\sigma\|^2 = \sum_{i,u,j,k} h_{ijk}^t h_{ijk}^t = 8 \sum_{a,b,c} k_{abc}^\alpha \bar{k}_{abc}^\alpha. \]

The Laplacian is given by

\[\Delta = -4 \sum_a \nabla_a \nabla_a. \]

We define \(A_m \) by

\[A_m = \sum_{\alpha,a_1,\ldots,a_m} k_{a_1\cdots a_m}^\alpha \bar{k}_{a_1\cdots a_m}^\alpha. \]

Now, we say that the immersion is of degree \(m_0 \) if there exists a positive integer \(m_0 \) in such a way that \(A_{m_0} \neq 0, A_{m_0+1} = 0 \). We need the following.

Lemma 5 ([11]). Let \(f_{p_i} : M_i \to CP^m \) be the \(p_i \)-th full Kaehler imbedding of a compact irreducible Hermitian symmetric space \(M_i \) of rank \(r_i \), and let \(f \) be the tensor product of \(f_{p_i} \) (\(i=1, \ldots, s \)). Then the degree of \(f \) is \(\sum_{i=1}^s p_i r_i \).

If \(M \) is an \(n \)-dimensional locally symmetric Einstein Kaehler submanifold with \(T=kg \) (see, **Proposition 1**), then we have

\[\sum_a k_{a0c}^\alpha \bar{k}_{d}^\alpha = 0 \quad \text{and} \quad \sum_{a,b} k_{a0b}^\alpha \bar{k}_{ab}^\alpha = 0, \]

so that from (6.14) we get

\[\sum_d k_{abcd}^\alpha = \left(\frac{n+3}{2} - \frac{3\|\sigma\|^2}{4n} \right) k_{ab}^\alpha. \]

Hence if \(M \) is an \(n \)-dimensional locally symmetric Einstein Kaehler submanifold with \(T=kg \), \(A_4 = 0 \) and \(\tau \neq n(n-3)/3 \), then \(\nabla \sigma = 0 \). Therefore, from **Proposition 1**, **Lemma 5** and Table 2, we see that \(CP^n(1/3) \) and compact irreducible Hermitian symmetric spaces of rank 3 cannot be of order \(\{k_1, k_2\} \). Consequently, from **Lemma 3** and Table 2 we have the following.

Proposition 5. Compact irreducible Hermitian symmetric submanifolds of degree 3 are of order \(\{1, 2, 3\} \).

§ 7. Proof of Theorem.

Let \(R, S, \tau, T, \sigma \) be the curvature tensor, the Ricci tensor, the scalar curvature, the tensor given in \([3.5]\) and the second fundamental form of \(M \) respectively, and let \(\bar{R}, \bar{S}, \bar{\tau}, \bar{T} \) and \(\bar{\sigma} \) be the ones of \(\bar{M} \). First, we get (see [11])

\[\dim(M) = \dim(\bar{M}), \quad \text{vol}(M) = \text{vol}(\bar{M}), \quad \int_M \tau = \int_{\bar{M}} \bar{\tau}. \]
and
\[\int_M (2\|R\|^2 - 2\|S\|^2 + 5\tau^2) = \int_{\tilde{M}} (2\|\tilde{R}\|^2 - 2\|\tilde{S}\|^2 + 5\tilde{\tau}^2). \]
These, together with the fact that \(M \) and \(\tilde{M} \) are Einstein, yield
\[\tau = \tilde{\tau}, \quad \|S\|^2 = \|\tilde{S}\|^2 \quad \text{and} \quad \int_M \|R\|^2 = \int_{\tilde{M}} \|\tilde{R}\|^2. \]
Then, from (5.13), (5.15) and (5.16) we see that
\[(7.1) \quad \|\sigma\|^2 = \|\tilde{\sigma}\|^2, \quad \int_M \|T\|^2 = \int_{\tilde{M}} \|\tilde{T}\|^2 \quad \text{and} \quad \int_M \|\nabla\sigma\|^2 = \int_{\tilde{M}} \|\nabla\tilde{\sigma}\|^2. \]
Moreover, since \(M \) is Einstein,
\[(7.2) \quad \int_M \left(-\frac{1}{9}\|\nabla R\|^2 + \frac{8}{21}\sum R_{ijkl}^* R_{klmn}^* R_{mnij}^* \right) \]
is a spectral invariant (see [10]), where \(R_{ijkl}^* \) denotes the components of \(R \) with respect to the real local orthonormal frames.

We see that
\[(7.3) \quad \sum R_{ijkl}^* R_{klmn}^* R_{mnij}^* = 64 \sum R_{abc} R_{def} R_{fa b}. \]
From (6.9) we get
\[\sum R_{abc} R_{def} R_{fa b} = \frac{n(n+1)(n+3)}{64} \left(\|\sigma\|^2 + \frac{\|T\|^2}{32} + \frac{n+3}{32n} \right) \]
\[- \sum k_{abc}^\alpha k_{a c}^\beta \delta_{ab} k_{a b}^\alpha k_{a b}^\beta \delta_{ab} k_{a b}^\alpha k_{a b}^\beta \delta_{ab} \]
This, together with (7.1)~(7.3), implies that
\[(7.4) \quad \int_M \left(-\frac{1}{9}\|\nabla R\|^2 + \frac{512}{21}\sum k_{abc}^\alpha k_{a c}^\beta \delta_{ab} k_{a b}^\alpha k_{a b}^\beta \delta_{ab} \right) \]
is a spectral invariant. From Lemma 4, we have
\[k_{abc}^\alpha = \sum_{\alpha,b,c} k_{abc}^\alpha = \frac{n+1}{4} \left(k_{a b}^\alpha k_{a c}^\beta + k_{a b}^\beta k_{a c}^\gamma + k_{a c}^\alpha k_{a b}^\beta \right) \]
from which it follows that
\[\sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha k_{a c}^\alpha = 3 \sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha k_{a c}^\alpha - 3 \sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha k_{a c}^\alpha. \]
Since \(M \) is Einstein, we have
\[\sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha k_{a c}^\alpha = \left(\sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha k_{a c}^\alpha \right)_{c} = 0, \]
so that we get
\[(7.5) \quad \sum_{\alpha,b,c} k_{abc}^\alpha k_{a b}^\alpha (k_{a b c})_{d} = 0. \]
Then it follows that

$$\frac{-1}{4}\Delta A_3 = \sum_{\alpha, \beta, \gamma, \delta} (k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a) d\bar{a}$$

$$= \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a + \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a$$

$$= \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a + A_4.$$

Hence we obtain

$$\int_M A_4 = -\int_M \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a.$$

Then, from Lemma 4, we see that

(7.6) \[\int_M A_4 = \int_M \left\{ -\left[(n+3)/2 - 3\|\sigma\|^2/4n \right] A_3 + \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a - A_4 \right\} \]

On the other hand, from (7.5) we get

\[
0 = \sum (k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a) d\bar{a} = \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a + \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a d\bar{a}
\]

\[
= \frac{3(n+2)\|\sigma\|^2}{64} - \frac{3}{16} \left(\|T\|^2 + \frac{\|\sigma\|^2\|T\|^2}{n} \right) + \frac{3\|\sigma\|^2\|T\|^2}{32n} + \frac{3}{4} A_3 - 3\sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a
\]

from which it follows that

(7.7) \[\sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a = \frac{1}{2} \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a + \text{term of } \{n, \|\sigma\|^2, \|T\|^2, A_3\}. \]

This, together with (7.6), implies

(7.8) \[\int_M \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a = \int_M \left(\frac{1}{6} A_4 - \frac{1}{6} \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a \right) + \text{term of } \{n, \|\sigma\|^2, \|T\|^2, A_3\}. \]

Therefore, from (7.4) and (7.8) we see that

$$\int_M \left(-\frac{1}{9} \|\nabla R\|^2 + \frac{256}{63} \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a - \frac{256}{63} A_4 \right)$$

is a spectral invariant. On the other hand, from (6.15) and (6.16) we get

$$\|\nabla R\|^2 = 64 \sum k_{\alpha\beta\gamma\delta}^a \bar{k}_{\alpha\beta\gamma\delta}^a k_{\alpha\beta\gamma\delta}^a,$$

from which it follows that
Table 2. Compact irreducible Hermitian symmetric submanifolds of degree 3.

<table>
<thead>
<tr>
<th>submanifold</th>
<th>dim<sub>c</sub></th>
<th>p</th>
<th>∥S∥²</th>
<th>∥R∥²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP<sup>n</sup>(1/3)</td>
<td>n</td>
<td>n(n+1)(n+5)/6</td>
<td>n(n+1)<sup>2</sup>/18</td>
<td>2n(n+1)/9</td>
</tr>
<tr>
<td>SU(r+3)/SU(U(r)×U(3))<sup>(r≥3)</sup></td>
<td>3r</td>
<td>r(r-1)(r+7)/6</td>
<td>3r(r+3)<sup>2</sup>/2</td>
<td>6r(3r+1)</td>
</tr>
<tr>
<td>Sp(3)/U(3)</td>
<td>6</td>
<td>7</td>
<td>48</td>
<td>66</td>
</tr>
<tr>
<td>SO(12)/U(6)</td>
<td>15</td>
<td>16</td>
<td>750</td>
<td>660</td>
</tr>
<tr>
<td>SO(14)/U(7)</td>
<td>21</td>
<td>42</td>
<td>1512</td>
<td>1344</td>
</tr>
<tr>
<td>E₄/E₅×T</td>
<td>27</td>
<td>28</td>
<td>4374</td>
<td>3132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>τ</th>
<th>∥σ∥²</th>
<th>∥T∥²</th>
<th>μ</th>
<th>λ₁</th>
<th>λ₂</th>
<th>λ₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>n(n+1)/3</td>
<td>2n(n+1)/3</td>
<td>4n(n+1)/9</td>
<td>1/3</td>
<td>(n+1)/3</td>
<td>2(n+2)/3</td>
<td>n+3</td>
</tr>
<tr>
<td>3r(r+3)</td>
<td>6r(r-1)</td>
<td>12r(r-1)</td>
<td>-1</td>
<td>r+3</td>
<td>2r+4</td>
<td>3r+3</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>27</td>
<td>-1/2</td>
<td>4</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>150</td>
<td>90</td>
<td>270</td>
<td>-2</td>
<td>10</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>252</td>
<td>210</td>
<td>630</td>
<td>-2</td>
<td>12</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>486</td>
<td>270</td>
<td>1350</td>
<td>-4</td>
<td>18</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3. Compact reducible Einstein Hermitian symmetric submanifolds of degree 3.

<table>
<thead>
<tr>
<th>submanifold</th>
<th>dim<sub>c</sub></th>
<th>λ₁</th>
<th>λ₂</th>
<th>λ₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP<sup>n</sup>×CP<sup>n</sup>×CP<sup>n</sup></td>
<td>3n</td>
<td>n+1</td>
<td>2n+2</td>
<td>2n+4</td>
</tr>
<tr>
<td>CP<sup>n</sup>×CP<sup>2n+1</sup>(1/2)</td>
<td>n+1</td>
<td>n+1</td>
<td>2n+2</td>
<td>2n+3</td>
</tr>
<tr>
<td>CP<sup>n</sup>×Q<sup>n+1</sup><sup>(n≥2)</sup></td>
<td>2n+1</td>
<td>n+1</td>
<td>n+3</td>
<td>2n+2</td>
</tr>
<tr>
<td>CP<sup>n</sup>×{SU(n+1)/SU(U(2)×U(n-1))]<sup>(n≥4)</sup></td>
<td>3n-2</td>
<td>n+1</td>
<td>2n</td>
<td>2n+2</td>
</tr>
<tr>
<td>CP₁×{SO(10)/U(5)}</td>
<td>17</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>CP<sup>11</sup>×{E₆/Spin(10)×T}</td>
<td>27</td>
<td>12</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>
\begin{equation*}
\int_M (3\|\nabla R\|^2 + 256A_4)\end{equation*}

is a spectral invariant. Since \tilde{M} is locally symmetric and of degree 3, it follows that M is also locally symmetric and of degree ≤ 3. Hence M is a compact Hermitian symmetric submanifold of degree ≤ 3. From Lemma 3, Proposition 2, Tables 1~3 and Theorem 4.3 in [6], M is one of the compact Hermitian symmetric submanifolds given in Tables 2 and 3.

Q. E. D.

Eigenvalues for classical symmetric spaces (up to their ranks) are computed by T. Nagano [5] and eigenvalues for exceptional types are computed in § 4, and eigenvalues for ones given in Table 3 can be computed in the same way. And from Lemma 2.4 in [6], we get

\begin{equation*}
\|T\|^2 = (1-\mu)\|\sigma\|^2,
\end{equation*}

where μ is given in Table 2. Since the scalar curvatures for irreducible Hermitian symmetric spaces are given in Table 2 of [6], from the above formula and (5.13)~(5.16) we can compute the values of $\|\sigma\|^2, \|T\|^2, \|S\|^2$ and $\|R\|^2$.

References

Seiichi UDAGAWA
Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku
Tokyo 158
Japan